

UNIVERSITY OF ILLINOIS BULLETIN vol. vi. AUGUST 9, 1909 No. 43

[Entered Feb. 14, 1902, at Urbana, Ill., as second-class matter under Act of Congress July 16, 1894]

BULLETIN NO. 37

UNIT COAL AND THE COMPOSITION OF COAL ASH

BY

S. W. PARR

AND W. F. WHEELER

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

URBANA, ILLINOIS

PUBLISHED BY THE UNIVERSITY

HE Engineering Experiment Station was established by action of the Board of Trustees December 8, 1903. It is the purpose of the Station to carry on investigations along various lines of engineering and to study

Y nor

problems of importance to professional engineers and to the manufacturing, railway, mining, constructional, and industrial interests of the State.

The control of the Engineering Experiment Station is vested in the heads of the several departments of the College of Engineering. These constitute the Station Staff, and with the Director, determine the character of the investigations to be undertaken. The work is carried on under the supervision of the Staff; sometimes by a research fellow as graduate work, sometimes by a member of the instructional force of the College of Engineering, but more frequently by an investigator belonging to the Station corps.

The results of these investigations are published in the form of bulletins, which record mostly the experiments of the Station's own staff of investigators. There will also be issued from time to time in the form of circulars, compilations giving the results of the experiments of engineers, industrial works, technical institutions, and governmental testing departments.

The volume and number at the top of the title page of the cover are merely arbitrary numbers and refer to the general publications of the University of Illinois; above the title is given the number of the Engineering Experiment Station bulletin or circular, which should be used in referring to these publications.

For copies of bulletins, circulars or other information, address the Engineering Experiment Station, Urbana, Illinois.

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

BULLETIN No. 37

AUGUST 1909

Page

T

UNIT COAL AND THE COMPOSITION OF COAL ASH

BY S. W. PARR, PROFESSOR OF APPLIED CHEMISTRY

AND

W. F. WHEELER, FIRST ASSISTANT, DEPARTMENT OF CHEMISTRY, ENGINEERING EXPERIMENT STATION

CONTENTS

Ι.	Introduction	2
II.	Historical Review	2
III.	Experimental Data	6
	Ash Composition	
	Summary	
	Conclusion	
VII.	Tabulation of Calculated Values for Unit Coal	36
	Appendix A	49
	Appendix B	

I. INTRODUCTION¹

It was recognized at the very outset of these experiments on coal, which were begun in the Laboratory of Industrial Chemistry, University of Illinois, about the year 1897, that much value would attach to any device or method which would make it possible to study the properties, composition, heat values, etc., of the pure coal substance as distinct from the non-coal material with which it is associated. While much data of a general nature accumulated from year to year, having more or less bearing upon this subject, it was not until recent months that a definite study of the problem was undertaken. It is the purpose of this paper to present the results of these investigations upon the properties and more definite determination of actual or unit coal. By unit coal is meant the organic material which is involved in combustion as apart from the mineral constituents which are the extraneous and variable accompaniments of the actual or unit coal.

II. HISTORICAL REVIEW

A number of investigators have worked on various phases of this topic. Lord and Haas, who were no doubt the first in the field, have developed the idea that in any given type of coal, or perhaps, less broadly, in any given deposit of coal, there exists an initial substance, with certain uniformities as to calorific value, which might make it possible to calculate the heat units for any sample whose source as to locality was known.

From numerous analyses of Pennsylvania and Ohio coals, Lord and Haas draw a comparison between the heat values as derived by Du Long's formula, the Mahler calorimeter, and those calculated from unit value which they designate as H, and describe as being the value for the ash, water and sulphur-free substance. They find the sulphur to be a disturbing element and correct for it in a partial manner only. However, they state as their conclusion that "On comparing the results, seam by seam, it would appear

¹Credit is due Mr. W. F. Wheeler for the greater part of the work embodied in this bulletin. Mr. Wheeler died November 18, 1909.

that the actual coal of a given seam, at least over considerable areas, may be regarded as essentially of uniform heating value."¹

The expression "actual coal" presumably refers to this same initial or unit substance free from extraneous matter, such as ash, moisture and sulphur. The same idea is evidently intended in the quotation below, though the same qualification as to "actual coal" is not used, thus, "The results of our tests seem to indicate the interesting conclusion that the character of a coal seam, so far as its fuel value is concerned, is a nearly constant quantity over considerable areas. The determination of the value for seams would be of great use, as the rapid proximate analysis, or, for that matter, merely the determination of ash and moisture in low sulphur coals, would be sufficient to grade coals of the same vein. Of course, it is dangerous to argue from so few samples, but the proposition seems reasonable. At least, we hope that further work may confirm these conclusions."

Kent, in discussing this paper, in the same volume, page 946, says, "The conclusions of the authors that the 'actual' coal (moisture and ash excluded) of a given seam over considerable areas, may be regarded as of uniform heating value, is one of great practical importance. I have held the same opinion tentatively for a long time...."

Contemporaneous with the work of Lord and Haas was that of W. A. Noyes.² As a result of 21 calorimetric determinations on Indiana and Pittsburgh bituminous coals, he says, "The heating effect may be found, in all cases examined, with a maximum error of 2 per cent, by the following rule: Subtract from 100 the per cents of moisture, ash, and one half the per cent of sulphur, and multiply the remainder by 80.7. The product will be the heating effect of the coal burned to vapor of water, expressed in calories."

Whatever value may have attached to these propositions, the matter seems to have lain more or less dormant until the subject

¹Trans. Am. Inst. Min. Eng. 27; 259, 1898. ²Jour. Amer. Chem. Soc. 20; 285, 1898.

was brought again to the surface by Mr. A. Bement, who has in numerous articles insisted upon its great practical value, as, for example, referring to the advantage of having certain units of reference, he says, "The possibility of the more extended use of constants is presented and the author urges the feasibility of considering the pure coal compositions as constants for a coal seam or particular locality of such seams. This possibility has been suggested, principally by the fact that the heating power of the pure coal from a general locality does not vary over greater limits than that of the calorimetric method, and he has been able to employ it as a constant in calculating the heating power of dry and moist coal, having determined only moisture and ash, and obtained results that check with calorimetric determinations made on the same samples. The author, however, does not claim originality in this observation, but does insist that the use of such constants is of advantage.... This view concedes that coal from a certain locality or seam does not vary in quality, but that the variation is due to the presence of ash and moisture which are impurities associated with the coal."¹

In a subsequent paper,² he argues for the same constancy of values when referred to the pure coal basis. These considerations have, no doubt, led Mr. Bement and others to adopt the term "pure coal" as expressive of this idea of constancy in the "ash and water-free" substance, in addition to the fact of its being a more compact and convenient term to use.

In all of these discussions relating to the uniformity of values for the actual coal, it is evident that if there are any constituents that fail of recognition to the extent that they are not included among the factors for mineral or non-coal material, but on the contrary, are included in the actual coal substance, then the question arises as to whether we yet have a fair basis of reference for drawing conclusions as to the constancy or the degree of agreement which we may properly credit to the actual coal constituent.

¹Jour. Am. Chem. Soc. 28; 636. ²Jour. Western Society of Engineers 11; 757.

For example, the coals of the Mississippi Valley may have as high as 4 or even 8 per cent of sulphur. Indeed, variations of 1 to 3 per cent may be possible within the product from the same mine, especially where the washing of the coal is in vogue. Now if this variable is counted as part of the "actual coal," it by so much prohibits any uniformity of heat values being credited to this hypothetical substance we call "unit coal." This phase of the subject was touched upon in the discussion¹ accompanying the paper by Mr. Bement already mentioned. It was there urged that not only the sulphur, but certain volatile constituents were present which escaped determination as part of the ash, and were, therefore, included in the actual coal, thus introducing a variable which prevented accurate study of that substance. Shortly afterward, analytical evidence in support of this idea was developed by Mr. Wheeler,² and the results of his investigation were published in 1908. The essential point developed in that work was the evidence of the existence of a non-coal constituent which by the ordinary methods of analysis not only escapes recognition and measurement, but is counted as part of the true coal substance. This is the water of hydration or other volatile matter chemically combined with the mineral or ash substance in such a manner as to be driven off only at a red heat. For example, if the shale content of the ash has 8 per cent combined water, and the same is not counted with the ash but as part of the "volatile combustible," here is a variable which by so far keeps us from coming at the correct value for the actual or unit coal. Similar variables would accompany the presence of gypsum whose water of crystallization in the process of analysis would take its place as part of the pure coal substance. Calcium carbonate also would afford a similar variable in so far as it would lose carbon dioxide in the process of analysis. It should be noted here that Taylor and Brinsmaid have proposed a graphical method for arriving at unit coal values which, though empirical and consequently indi-

¹Parr; Jour. Western Society of Engineers 11; p. 762, 1906. ²Trans. Am. Inst. Min. Engs., Vol. 38, p. 621, 1908.

rect in character, is very ingeniously devised and no doubt is of much practical value.¹

III. EXPERIMENTAL DATA

It is the purpose of this paper to present the results of our own investigations, together with such applications as the data at hand will permit, in the hope that the facts presented may indicate the possibility of arriving directly at the determination of all of the non-coal or mineral constituents, including those more volatile mineral compounds which have heretofore been associated in analytical processes with the fuel. The fact should be especially emphasized that it has been the purpose of the investigation to arrive, first, at an exact determination of the inorganic component of the coal as distinct from the organic material, and, second, to study the constancy of composition of this organic substance as indicated by its heat content. Only in this manner can we arrive at a conclusion as to whether or not it has properties which will warrant its use as a fuel unit. Manifestly, therefore, the sulphur should be excluded from this unit. In so far as sulphur occurs in the form of iron pyrites, and this includes the major part, it is extraneous in character and bears no constant ratio to the amount of organic matter present.

For the purpose of illustrating by specific instances the effect of including such variable constituents as sulphur, etc., in the combustible matter, instead of in the ash, and so allowing them to augment falsely the actual coal substance, the following experimental procedure was followed:

A given sample of the coal was separated into two divisions of high and low ash content in a solution of zinc sulphate of 1.35 specific gravity, whereby that part of the coal with low ash and less pyrites was separated by floating from the heavier particles with higher ash and more sulphur, the latter sinking to the bottom. Now, upon the hypothesis that the "actual coal" in these

¹Jour. Ind. and Engrg. Chem. Vol. 1, Feb. 1909.

two divisions of the same sample should have the same heat value. the subjoined table is arranged to show what widely divergent values may be indicated by reason of different methods of arriving at the "actual coal" constituent. If everything excepting the ash as weighed and the moisture be credited to this material, there will result unit values, as shown under column (a) of the subjoined Table 1, which is the "pure coal" of Mr. Bement. Tf we take out the heat due to sulphur, and correct the remaining value for ash as determined, plus moisture, plus all of the sulphur, there will result values as shown in column (b), which would be the results as derived by means of the method of Lord If we calculate the indicated values to the material and Haas. as free from ash and moisture and correct also for one-half of the sulphur, there will result values, as shown under column (c), which would conform to the method as suggested by Dr. Noves.

In column (d) we have results from the method of calculation which subtracts the heat due to the sulphur, corrects the ash for the sulphur, and also adds a uniform amount for hydration or volatile inorganic matter, amounting to 8 per cent calculated upon the corrected ash free from iron pyrites, assuming all of the sulphur to be in that form. A tabular statement, therefore, for these four different methods of calculation would be as follows:

(a) According to Bement

B. t. u. as indicated

1.00 - (Moisture + Ash as weighed)

(b) According to Lord and Haas

B. t. u. - 4050 S

1.00 - (Moisture + Ash as weighed + Sulphur)

(c) According to Noyes

B. t. u. as indicated

1.00 - (Moisture + Ash as weighed + 1/2 Sulphur)(d) According to Parr and Wheeler

1.00 - [Moisture + Ash + 5/8 S + .08 (Ash - 10/8 S)]

7

COMPARATIVE VALUES OF "ACTUAL COAL" TABLE

Non-coal as $1.08 \times \text{Ash}$ + 22/40 S. Ref. Diff. to B. t. u. -6 50 +49HEAT VALUE OF "ACTUAL COAL" AS CALCULATED BY -5000 S. + 1 1 (p 14340 14392 14331 14442 14602 14566 14615 14603 $Ash + \frac{1}{2}Sul-$ phur Ref. to Non-coal as as Indicated -65 +21+96Diff. +138 14680 +78DIFFERENT METHODS B. t. u. (c)71 14615 14477 14412 -175 14407 14428 14519 14602 -186 to B. t. u. -4050 S. Sulphur Ref. Ash (uncor-Non-coal as Diff. + + rected) (q)+171 14754 14709 14523 +161 14534 +148 14664 14709 14593 14616 +177Non-coal as ed) Ref. to Diff. uncorrect-Ash only B. t. u. Indicated (n) 14164 14487 14192 14509 13987 14361 14316 14031 u. 13300 12523 12356 11478 13043 13929 12885 13922 B. t. OVEN-DRY COAL Iron 1.09 3.38 . 70 1.29 65 2.37 54 2.32 4.25 5.99 2.95 1.85 3.43 Sul. 20 1.39 2.33 3. 12.83 10.05 11.66 6.12 8.13 4.01 3.94 18.21 Ash 1.35..... than 1.35.... Co., Ill., Lump Ill., Screen Gr. less Gr. less Williamson Co., Ill., Washed Washed DESCRIPTION OF (a) Untreated.... (b) Floated, Sp. (a) Untreated...(b) Floated, Sp. LaSalle Co., Ill., SAMPLE Sangamon Co., Screenings: than 1.35 than 1.35. Sangamon Nut: Coal: Lab. 6130 6131 6122 6123 6290 6121 6129 No. Tab. No. 2 3 4 -

COMPARATIVE VALUES OF "ACTUAL COAL" - (Continued)

			0	Id-NJ)	OVEN-DRY COAL	ΥΓ	HEAT VALUE	Heat Value of "Actual Coal" as Calculated by Different Methods	Coal" as Cal Methods	CULATED BY
Tab. No.	Tab. Lab. No. No.	DESCRIPTION OF SAMPLE	Ash	Sul.	Iron	Iron B.t.u.	(a) Non-coal as Ash only (uncorrect- ed) Ref. to Indicated B. t. u.	Non-coal as Ash (uncor- rected) + Sulphur Ref. to B. t. u 4050 S.	$ \begin{array}{c} \begin{pmatrix} c \\ Non-coal as \\ Ash + \frac{1}{2}Sul^{-1} \\ phur Ref. to \\ B. t. u \\ as Indicated \\ t \end{array} $	Non-coal as 1.08 \times Ash + 22/40 S. Ref. to B. t. u 5000 S.
s	6132	Vigo Co., Ind. Nut: (a) Untreated	16.84	7.62	5.17	16.84 7.62 5.17 11790 14170	Diff. 14170	Diff. 15230	Diff. 14858	Diff. 14698
	cc10		4.27	3.08	4.27 3.08 1.06	13870	14478 + 308	$13870 14478 \ +308 14836 \ -394 14725 \ -133 14638$	14725 - 133	14638 - 60
9	6135	Sullivan Co., Ind. Lump: (a) Untreated.	6.11	6.11 3.37	2.24	2.24 13664 14551	14551	14944	14819	14741
	0154		2.53 1.29	1.29	.36		14624 + 73	$14259 14624 \ + \ 73 14771 \ - 173 14820 \ + \ $		1 14700 - 41
1	171	Franklin Co., Ill., Face sample:	10 00	1 L		11620 11104	14104	14736	14244	14467
	463		4.64	.54	Not Det.	13765	14435 + 241	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14476 + 232	14513 + 46
∞	536	Franklin Co., Ill., Face sample: (a) Sp. Gr. greater than14.43	14.43	1.45	"	12142 14190	14190	14495	14310	14433
	464		3.83	.71	**	13918	14472 + 282	$13918 \left 14472 + 282 \right 14550 + 60 \left 14525 + 215 \right 14541 + 108$	14525 +215	14541 +108
						11-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	A REAL PROPERTY OF A REAT			

COMPARATIVE VALUES OF "ACTUAL COAL" - (Concluded)

+ 22/40 S. Ref. Diff. Non-coal as $1.08 \times Ash$ +41-31+16HEAT VALUE OF "ACTUAL COAL" AS CALCULATED BY 13970 | 14604 + 249 | 14725 + 194 | 14694 + 219 | 14690 + 235000 S. as Indicated to B. t. u. (p) 14446 14452 14615 14405 14421 14599 14667 $Ash + \frac{1}{2}Sul-$ phur Ref. to +29862 +212Non-coal as Diff. B. t. u. DIFFERENT METHODS + (c)+193 14617 14434 14136 14360 14422 14405 14475 46 +281Ash (uncor-Sulphur Ref. 1 Non-coal as Diff. rected) + to B. t. u. -4050 S. + (q)14644 14464 14384 14430 14451 14531 14183 +336+22958 (uncorrect-ed) Ref. to Non-coal as Diff. Ash only Indicated + B. t. u. (a)14369 14535 14033 14309 14367 14306 14355 B. t. u. 11766 11731 10922 13763 12947 13985 13942 OVEN-DRY COAL Iron ,, ,, ,, ,, ,, ,, ,, Sul. 1.15 86 65 1.15 66 1.37 74 4.34 1.07 Perry Co., Ill., Face sample: (a) Sp. Gr. greater than 22.171.35..... (a) Sp. Gr. greater than 17.75 18.28 4.22 9.52 4.08 2.66 Ash (b) Sp. Gr. less than 1.35... (a) Sp. Gr. greater than 1.35. (b) Sp. Gr. less than 1.35... (b) Sp. Gr. less than 1.35... (b) Sp. Gr. less than 1.35... Perry Co., Ill., Face sample: (a) Sp. Gr. greater than 1.35...... Williamson Co., Ill., Face Williamson Co., Ill., Face OF DESCRIPTION SAMPLE sample: Fab. Lab. No. No. 465 472 537 466 473 538 468 467 6 10 12 11

The method of deriving a formula embodying the conditions prescribed under (d) would be as follows:

First, with reference to the subtraction of the heat due to the sulphur. It should be borne in mind that the purposes of this study are (1), to arrive at the actual weight of unit coal as represented by the expression 1.00 - (all non-coal constituents), and (2) to derive the actual heat per unit weight to be credited to this material, by dividing the indicated heat for this substance by the weight which produces it. Hence, for this particular purpose, the sulphur must be eliminated, both as to its heat value and as to its weight in the material whose value is sought for. This procedure may not suit the purpose of the engineer who has in mind only the available heat without reference to its source, but that is a matter quite apart from the facts which it is the purpose of this discussion to establish.

Second, the expression 5000 S has been used as indicating the heat due to the combustion of the sulphur, for the reason that the value 4050 S, as used in formula (b) represents the heat of combustion for pure sulphur, while the heat of combustion of sulphur in the form of pyrites, FeS₂, combines also the heat of formation of iron oxide, Fe₂O₃. It is the resultant value, therefore, of the several reactions involved that is desired.

According to the direct tests by Somermeier,¹ in the combustion of coal with known weight of iron pyrites, the indicated heat per gram of sulphur so combined is 4957 calories. In calculating heat values, the correction introduced for the combinations resulting from calorimeter reactions as compared with open-air combustion is 2042 calories per gram of pyritic sulphur; hence 4957 - 2042 or 2915 calories (5247 B. t. u.) represents the heat due to the burning of one gram of sulphur in pyritic form instead of 2250 calories (4050 B. t. u.), the amount which would be credited to sulphur in the free condition. A strict application of these values, therefore, would call for a correction of 5247 S, as representing the heat to be subtracted for the sulphur. This,

¹Jour. Am. Chem. Soc. Vol. 26, p. 566.

ILLINOIS ENGINEERING EXPERIMENT STATION

however, would imply that all of the sulphur is in the pyritic form. Since a certain portion of the sulphur is always present in organic or other form of less heat-producing capacity, it is deemed more nearly correct to use an even factor of 5000 as representing the heat to be credited to unit amounts of the total sulphur present.

The factors for the divisor in the formula under (d) are derived as follows:

The atomic ratio of iron to sulphur in iron pyrites (FeS_2) is 56:64; that is, 7/8 of the total sulphur is the equivalent of the iron present as Fe.

The atomic ratio of the oxygen of the ash, combined as Fe_2O_3 to the total sulphur which it replaces is 48:128; that is, 3/8 of the total sulphur is the equivalent of the oxygen present in the ash, combined as Fe_2O_3 , hence the ash as weighed may be corrected for the iron pyrites FeS_2 burned to Fe_2O_3 , by subtracting from the ash 10/8 of the weight of the sulphur as determined. This remainder, therefore, is considered as the shaley and carbonate constituent upon which the 8 per cent of water of hydration, carbon dioxide, etc., are calculated. The expression for the total non-coal substance then becomes

Non-coal = Moisture + Ash as weighed + 5/8 S + .08 (Ash - 10/8 S).

Clearing of fractions and combining,

Non-coal = Moisture +1.08 Ash +21/40 S.

In this expression the factor 21/40 S can not be further simplified by making it 1/2 S, for the reason that our correction for sulphur is already too small by that part of the organic sulphur not covered by the addition to the ash value of 3/8 of the total sulphur indicated in the original formula. On the contrary, we shall be approaching nearer the truth by increasing slightly the sulphur correction, which may be done with convenience in calculating, by making this factor read 22/40 S or 1/2 S + 1/20 S. Hence the simplification of the entire formula under (d) would be

B. t. u. or unit coal ==

Since the analytical values given in the table are based upon the coal as oven-dry, of course, the moisture factors in the above formula drop out, and would not enter into the calculations. In the table, for example, sample 1 has an indicated B. t. u. for the dry coal of 12 356. The calculations, therefore, for each column are

$$(a) = \frac{12356}{1.00 - .1166} = \dots 13\,987$$

$$(b) = \frac{12356 - 4050 \ (.0599)}{1.00 - (.1166 + .0599)} = \dots 14\,709$$

$$(c) = \frac{12356}{1.00 - (.1166 + .0299)} = \dots 14\,477$$

$$(d) = \frac{12356 - 5000 \ (.0599)}{1.00 - [1.08(.1166) + .02995 + .00299]} = \dots 14\,331$$

From an examination of this table it seems evident that the values in columns (a), (b), and (c) vary for each pair of samples more widely than we should expect, provided our calculation in these cases is based upon the actual coal; the variation, for example, reaching nearly 2 1/2 per cent in No. 9. That a hydration component is the disturbing factor seems evident from the wide variation in the ash of the two divisions of this sample (22.17 per cent to 4.22 per cent), while the sulphur values are sufficiently close to eliminate any variable due to that element. In column (d), however, it is to be noted that the introduction of an amount of hydration equal to 8 per cent of the pyrite-free ash brings the 'two heat values to a variation of only 41 B. t. u. or less than 1/3 of 1 per cent. The component calling for this correction, therefore, seems to be directly associated with the ash, since the variation

in sulphur is too small to enter into the account. Equally striking evidence of the presence of such a component is seen in the samples numbered 7, 10, 11, and 12. Sample 8 is essentially the same as 7, and while there is not so close an agreement in this sample, still it must be recognized as confirmatory of the general proposition. If, for example, we admit a manipulation variant of 40 or 50 units, it is hardly to be expected that the other variables, such as the true amount of hydration or the exact character of the same, whether hydration of shale or carbonating of lime, may not carry with it an equal variable, so that in the present stage of our knowledge, it seems fair to consider even this variation quite within reasonable limits.

Another phase of these results is also to be noted. The agreement as to results just given above is seen to depend in large measure upon the correction of the high ashes in those samples referred to, by addition of a component which we have designated as hydration. Fortunately, the list of samples also includes coals high in sulphur, and this affords the necessary condition to show whether or not the sulphur enters into the proposition as a variable, and also what method of correction will most nearly neutralize its effect. Here, again, the close agreement, as in samples 1, 2, 4, 5, and 6, indicates that the method employed is correct in principle; that is, the heat value of the sulphur, taken as 5000 times the sulphur content, is subtracted from the indicated heat units, and the ash is restored as nearly as is conveniently possible, to include the sulphur as joined to the iron in its original or pyritic form. It is realized, as already indicated, that an error is inherent in this procedure, if that part of the sulphur is present as organically combined. Strictly considered, therefore, it should not be reckoned as pyritic sulphur. Test has been made, however, of introducing a further refinement into the calculation by separating the sulphur into the organic part and the inorganic, the amount of the latter be ing indicated by the content of iron present in the ash. The iron pyrites thus calculated, Table 2, on this iron basis has been

14

made a part of the original non-coal substance. The 8 per cent of hydration, etc., has then been calculated to the ash as corrected for this amount of pyrites burned to oxide, and finally the organic sulphur has been added as a part of the non-coal matter. The indicated heat units were diminished by the total heat to be credited to the sulphur, taking account of its two forms as indicated in the formula for column (e), thus (e) =

 $\frac{\text{B. t. u.} - [5247 \times 8/7 \text{ Fe} + 4050 \times (\text{S} - 8/7 \text{ Fe})]}{1.00 - [\text{Moisture} + \text{Ash} + 5/7 \text{ Fe} + .08 (\text{Ash} - 10/7 \text{ Fe}) + (\text{S} - 7/8 \text{ Fe}]}$

In this formula, the iron weighed as Fe_2O_3 has a ratio of oxygen to iron of 48 : 112 or 3/7. To restore it to an equivalent of FeS_2 which has a ratio of S (64) to Fe (56) or 8 : 7 would require the addition to the ash content of 5/7 of the iron as determined. Similarly 8/7 of the iron value represents the sulphur as originally joined to the iron in the pyritic form, and 10/7 of the iron represents the Fe_2O_3 as a component part of the ash as weighed.

Since the analytical values refer to the coal on the dry basis, the factor for moisture drops out of the formula. The results of this method of calculating are given for the first six samples in column (e) of Table 2, placed in comparison with column (d) repeated from the previous table. As may be readily seen, the relative values are in substantially the same agreement as before. This method involves the added requirement of an iron determination and does not altogether remove the uncertainty as to the form in which the combinations of sulphur occur. In the present state of our knowledge, as well as on the score of practicability, we seem to be justified in accepting the values and formula as given in column (d).

The arguments thus far brought forward to prove the correctness of the method for arriving at the real weight of non-coal substance are sufficiently conclusive for the twelve samples included in the table. How generally applicable this method will be for all types and all regions, remains for the subsequent part of this paper to discuss. COMPARATIVE VALUES OF "ACTUAL COAL"

, Ash, rritic	rganic id 8% rected Fe ₂ O ₃	Diff. - 42	- 2	+54	+ 60	+ 4	- 63
(e) Non-coal as Ash, Water, Pyritic	Sulphur, Organic Sulphur, and 8% Ash as Corrected for Actual Fe ₂ O ₃	$14494 \\ 14536$	14569 14567	$\begin{array}{c} 14605\\ 14659\end{array}$	14620 14680	$\begin{array}{c} 14779\\ 14783\end{array}$	14833 14770
(d) Non-coal as 1.08	Ash + 22/40 S. Ref. to B. t. u. - 5000S.	Diff. + 9	- 50	- 1	+49	-60	-41
(o Non-coa	$\begin{array}{l} \text{Ash} + 22/40 \\ \text{Ref. to B. t.} \\ - 5000\text{S.} \end{array}$	14331 14340	14442 14392	14603 14602	14566 14615	14698 14638	14741 14700
د	B. t. u.	12356 13300	11478 13043	$12523 \\ 13929$	$12885 \\ 13922$	11790 13870	13664 14259
ay Coai	Iron	3.38	2.37	1.09	2.32	5.17 1.06	2.24
Oven-dry Coal	Sul- phur	5.99 3.20	4.25 2.95	1.85	3.43	7.62 3.08	3.37
0	Ash	11.66 6.12	18.21 8.13	$12.83 \\ 4.01$	10.05 3.94	$16.84 \\ 4.27$	6.11 2.53
DECONTON OF SAMPLE		Sangamon Co., Ill., Lump Coal: (a) Untreated	Sangamon Co., Ill., Screenings: (a) Untreated	Williamson Co., Ill., Washed Nut: (a) Untreated	LaSalle Co., Ill., Washed Screenings: (a) Untreated	Vigo Co., Ind., Nut: (a) Untreated (b) Floated, Sp. Gr. less than 1.35	Sullivan Co., Ind., Lump: (a) Untreated
	No.	6130 6131	6122 6123	6290 6121	6129 6128	6132 6133	6135 6134
Tab.	No.	1	8 4	0.2	8 -1	910	11 12

TABLE 2

As a possible source of variation, the different layers of the same seam were studied with a view to determining inherent variations in the stratification of the coal, which, by variations in sampling or mining, might enter into the case and to a certain extent, modify the fact of uniformity. Three mines were, therefore, sampled with reference to the top, middle, and bottom layers of coal, or with reference to certain zones or bands of coal that seemed to have a structure more or less characteristic and distinct from the other layers. These results are listed in the following table, the basis of comparison being the thermal units calculated to "unit coal," which in subsequent discussion, as already indicated, will be the term made use of in this paper for that coal free from ash, moisture, pyrites, and volatile inorganic matter, as calculated under column (d) in Tables 1 and 2.

Attention is called to the following points. In the Collinsville sample, the bands of division were approximately the upper 2 feet, the lower 2 feet, and the middle zone of about 4 feet. When referred to the "unit coal" basis, the upper and middle divisions are in close agreement. The lower layer is considerably higher. This fact would have a modifying influence on the entire face of the seam as is illustrated in No. 4, which is a calculated composite value based on the factors for samples No. 1, 2 and 3. No. 5 and 6 are samples taken from the entire face of the seam, and taken from a mine located not over 2 or 3 miles from the mine from which the first samples by layers were taken. It is evident that the values indicated for the separate layers are not variable to an extent which would noticeably change the ultimate value for the entire face. Moreover, in the process of mining, the output represents the face of the vein and not the various layers. However, the facts brought out in this comparison of the various strata are valuable as indicating certain variations in composition of the same seam which might result from changes in the relative thickness of certain bands. In the same region, or in the same vein, these possible variations due to this phase of the matter would seem to be practically negligible when we consider

the regular output of the mine, since a mixture of the entire seam is inevitable, and these small variations of the layers would be very easily neutralized.

The same statement is applicable to the results as shown for the two additional sections similarly examined from Belleville

	Lab.		Ove	N-DRY	COAL	Non-coal as 1.08 Ash +
Tab. No.	No.	Description of Sample	Ash	Sul- phur	B. t. u.	22/40 S. Ref. to B. t. u. – 5000S.
		Collinsville, Illinois				
1 2 3 4	725c 725b 725a 725	Top 23 in Middle 48 in Bottom 22 in Calculated for entire face	$6.14 \\ 12.02 \\ 14.86$	4.44 3.84 7.52	13505 12618 12297	14606 14634 14936
5 6	723 724	93 in Sample taken from entire face. Sample taken from entire face.	12.23	$4.85 \\ 4.37 \\ 3.33$	12762 12604 12982	$14694 \\ 14675 \\ 14613$
		Belleville, Illinois				
1 2 3	1000 999 995	Top 4 in $\frac{1}{2}$ in.; 2 in. from the top Entire face, 76- $\frac{1}{2}$ in	2.09	3.35 2.66 4.19		$14814 \\ 14667 \\ 14694$
		DuQuoin, Illinois				
1 2 3	422 421 	Top 30 in Bottom 69 in Entire face. 99 in		.76 .98 .91	13573 12181 12603	14516

 TABLE 3

 Variations in the Calorific Value of the "Unit Coal" for Different Horizontal Layers of the Seam

and Duquoin. The agreement is even more marked than in the case of the Collinsville seam.

Notwithstanding these evidences of uniformity, the fact should not be lost sight of that these results have a special value in that they show at a glance the necessity of care in taking face samples, to see that the cut is made equally and from the entire working face of the seam. It is evident also that lump or hand samples which are frequently taken for analysis are not only of

18

PARR-WHEELER-UNIT COAL AND COAL ASH

little value but are as a rule positively misleading, and the error is quite as likely to be of a minus as of a plus character.

IV. ASH COMPOSITION

Notwithstanding the very satisfactory indication of the adaptability of the proposed formula for arriving at the unit coal values, as shown by the foregoing Tables 1 and 2, the question still remains as to whether the samples chosen are sufficiently typical to represent all the varieties of composition so far as the ash or inorganic content is concerned. Under this division of the subject, therefore, is taken up a study of this phase of the matter. As a first step, it was deemed necessary to make an analysis of the ash of the coals selected for use in the above tables. For example, the somewhat arbitrary factor, 8 per cent, has been adopted as covering a constant amount of volatile inorganic constituent to be reckoned with the total ash. It may make an appreciable difference whether this component is present as water of hydration, as in a clay or shale, or combined with lime as carbon dioxide. If in the latter combination, the amount of lime present would be an indication of that fact, while the amount of alumina present might serve to indicate the likelihood of this percentage being represented by hydration of shale or clay. An analysis of the ash of the 12 samples as listed in Table 2 is given in Table 4.

In this table, attention is first called to the fact that, with the exception of sample 3, the amount of lime is quite uniform. Here the lime approximates 12 per cent. By reference to the column for alumina, which might be taken as an indication of the clayey matter present, a very fair uniformity also exists, with the possible exception of sample 11, where the aluminium content is relatively low. Now, turning to Table 2 for an indication of a variation in the calculated values for unit coal, it does not seem that these variations in samples No. 3 and No. 11 have entered into the case in an appreciable degree.

Thus far it might be safe to conclude, that the adoption of

the 8 per cent constant, as representing the volatile matter of the ash, is applicable. However, if in this group we have a variation in the lime content from 2 to 12 per cent, as in samples 7 and 3, have we any evidence that it stops there? Similarly,

TABLE 4

Tab.	Lab.	Description	Ash in Dry			rsis of er Cent	Asн	
No.	No.		Coal %	SiO_2	$\mathrm{Fe_2O_3}$	Al_2O_3	CaO	MgO
1	6130	Sangraman Ca. III. Luma	11 66	22 1	40 E	17.9	F C	0.9
1 2	6130	Sangamon Co., Ill., Lump. Sangamon Co., Ill., Lump.	11.66 6.12	33.1 54.2	42.5	24.2	5.6	1.2
3	6122	Sangamon Co., Ill., Screen-	0.12	34.2	10.4	24.2	4.1	1.2
5	0122	ings	18.21	49.2	20.7	17.1	11.9	1.1
4	6123	Sangamon Co., Ill., Screen-	10.21	17.14	20.7			1.1
-	0120	ings	8.13	55.9	13.0	23.6	6.7	0.8
5	6290	Williamson Co., Ill., Wash-						
		ed Nut	12.83	54.1	12.1	23.8	6.7	1.2
6	6121	Williamson Co., Ill., Wash-						
		ed Nut	4.01	51.7	19.3	24.6	2.4	1.0
7	6129	La Salle Co., Ill., Washed	10.07					
0	(100	Screenings	10.05	40.3	34.0	22.8	2.0	0.9
8	6128	La Salle Co., Ill., Washed	2.04					
9	6132	Screenings	$3.94 \\ 16.84$	32.9	43.8	20.5	2.9	0.9
10	6133	Vigo Co., Ind., Nut Vigo Co., Ind., Nut	4.27	35.1	45.8	20.5	2.9	0.9
11	6135	Sullivan Co., Ind., Lump.	6.11	27.1	52.3	14.1	4.4	1.2
12	6133	Sullivan Co., Ind., Lump.	2.53	45.8	20.2	28.3	5.4	0.0
14	0101	Built van Co., Ind., Builtp	2.55	10.0	20.2	20.0	5.7	0.0

Ash Composition of Coals of Table 2

if the alumina may drop from 25 per cent (No. 10) to 14 per cent (No. 11), can we conclude that these numbers represent the limits of variation, and, if not, will greater variations in these factors cause a disturbance in the factor chosen to represent the volatile matter present?

In extending our study over a wider range of ash analysis, we soon come upon cases where much higher percentages of lime are in evidence. In view of this fact, it was considered worth while to estimate also the carbon dioxide and the chlorine. The carbon dioxide would be a more direct index of volatile loss of ash than the content of lime, since the latter might be combined in other than carbonate form. Chlorine, if present in any form,

PARR-WHEELER-UNIT COAL AND COAL ASH

would be volatile, depending on the temperature made use of. Table 5 is given as illustrating the extremes to which lime as calcium carbonate, and alumina combined as clayey matter may be met, at least in the ash from Illinois coals.

TABLE 5

Tab.	Lab.	DESCRIPTION	In pe	r cent o Coal	of Dry		Anal	YSIS OF	Аѕн	
No.	No.		Ash	CO2	Cl	SiO ₂	Fe ₂ O ₃	Al_2O_3	CaO	MgO
1 2 3 4	734 1095 1178 1403	Grundy Co., III Saline Co., III. Clinton Co., III Peoria Co., III	11.49 15.56	1.22 2.48	none .04 .10 none	22.8 32.7 39.0 25.7	32.4 33.0 22.4 12.9	10.2 9.0 6.3 6.8	34.0 25.3 31.7 54.5	0.7 0.8 0.7 1.5

ASH COMPOSITION OF COALS WITH HIGH PERCENTAGE OF LIME

It might be argued from the results in Table 5, that whereas the lime content is high, the alumina is low, and there is, therefore, a compensation which would still furnish evidence that the 8 per cent constant for the inorganic volatile matter would be applicable. However, to test the matter, it was deemed advisable to subject these samples to the floating test as already indicated, giving as a result two divisions of each sample, one with an abnormally low ash, the other with an abnormally high ash; the latter division in each case still further accentuating the lime factor. In consequence of this division, the analysis of the eight resulting samples together with the calorific values is presented in Table 6. Columns (a) and (d) only are given in order that a comparison may be made between the ash values for "ash and water-free" or "pure coal" with the "unit coal" values as derived by the formula already made use of on page 14.

From the calculations under column (a) and column (d), it is evident that the wide discrepancies under column (a) are due to a failure to take into consideration those mineral constit-

ILLINOIS ENGINEERING EXPERIMENT STATION

uents of the coal which properly belong to the ash. This is the fuel unit designated the "ash and water-free," combustible or "pure coal" basis adopted by engineers. Under column (d), the

TABLE 6

PROXIMATE ANALYSIS WITH	CALORIFIC VALUES	FOR FLOAT AND	SINK COAL WITH
HIGH P	ercentages of Lim	IE IN THE ASH	

				er cen ry Coa		Heat Valu Coal'' as Differen		d by
Tab.	Lab.	DESCRIPTION				(<i>a</i>)	(0	l)
No.	No.	DESCRIPTION				''Pure Coal'' Basis	"Unit Ba	
			Ash	Sul.	B. t. u.			- 5000S.
						1.00 – Ash	1.00 — (1.08 Ash	$+\frac{22}{40}S.)$
						Diff.		Diff.
1 2	$\begin{array}{c} 734 \\ 734 \end{array}$	Float, Grundy Co. Sink, Grundy Co.				14120 13760	14217 14262	
	101	olink, Grundy Co.	21.77	5.00	10755	- 360	14202	+ 45
3	1095	Float, Saline Co				14600	14768	
4	1095	Sink, Saline Co	19.94	7.01	11122	13902 - 698	14906	+138
5	1178	Float, Clinton Co.	8.54	1.96	12634	13813	13975	1 100
6	1178	Sink, Clinton Co			8856	13004	13654	
7	1402	Elect Desile Co	10.27	2 20	10706	- 809	11100	-321
8	$1403 \\ 1403$	Float, Peoria Co. Sink, Peoria Co.			9216	14276 14014	14489 14859	
Ū	1 +00	onik, i colla co	54.24	7.71	7210	-262	14039	+370

unit coal values come very much closer together, but are not in such satisfactory agreement as was the case with the coals in Table 2, having a low lime content in the ash. It is evident, therefore, that in these two extreme divisions which have been made by the process of floating out to get the lighter and sinking the heavier ash coal, the inorganic volatile matter must be accounted for in some further correction than would be included in the 8 per cent adopted in calculation for Table 2. It is evident in this set of samples, that we have accentuated in an extreme manner the effect of a high ratio of carbonate of lime, bringing this constituent up to 16.67 per cent of the total coal in No. 5 of

 $\mathbf{22}$

the table, and to 11.99 per cent in No. 6. While these percentages are abnormal, they serve well the purpose of indicating the effect upon the proposed formula for arriving at unit coal values. The first question which presents itself, therefore, is whether we should not correct our ash factor, not by an 8 per cent addition alone, but by adding directly to the ash as weighed, the amount of carbon dioxide present, on the assumption that all of the calcium carbonate would be decomposed, setting free the CO_2 . This involves another hypothesis, namely, that in the ordinary determination of ash, the calcium carbonate present is completely decomposed. To test this point, the four samples, subdivided into pairs of low and high ash each, were subjected first to the ordinary ash determination as directed by the Committee of the American Chemical Society on standard methods for coal analysis. No important modification of this method was employed. After complete burning off of the carbon in a porcelain crucible over a Bunsen lamp, a blast lamp, driven at moderate intensity, was applied for 30 to 40 minutes. The results are listed in Table 7, in the first column for ash percentages, marked (a). In the column marked (b), the method employed made use of a platinum crucible and after burning off the carbon, an intense heat was applied by means of the blast lamp, continuing the blasting to constant weight. As will be seen from these results, a very wide difference may be made in the seemingly simple matter of determining the ash. Evidently under column (a) only a part of the calcium carbonate has been decomposed in the "sink" samples.

In this table, therefore, we have a striking illustration of the variations that may enter into the ash determination. The evidence of a variable element indicated its presence in a very marked manner in the process of obtaining the values for column (a). It was found almost impossible to secure duplicate results, the values sometimes varying in the two portions run in parallel by as much as 1.00 per cent. This evidence of a high content of calcium carbonate and its effect on the accuracy of the ash deter-

Tab. No.	Lab. No.	Description	(a) Ash as Deter- mined by Usual Method	(b) Ash as Deter- mined by Blasting to Constant Wght and Fusion	Difference in per cent of Dry Coal
1 2 3 4 5 6 7	734 734 1095 1095 1178 1178 1403	Float, Grundy Co., Ill. Sink, Grundy Co., Ill Float, Saline Co., Ill Sink, Saline Co., Ill Float, Clinton Co., Ill Sink, Clinton Co., Ill Float, Peoria Co., Ill	$\begin{array}{c} 4.57\\ 21.99\\ 6.42\\ 19.94\\ 8.54\\ 31.90\\ 10.37 \end{array}$	$\begin{array}{c} 3.54\\ 16.85\\ 5.96\\ 18.59\\ 7.23\\ 26.88\\ 9.08 \end{array}$	$ \begin{array}{r} 1.03 \\ 5.14 \\ 0.46 \\ 1.35 \\ 1.31 \\ 5.02 \\ 1.29 \\ \end{array} $
8	1403	Sink, Peoria Co., Ill	34.24	22.93	11.31

VARIATIONS IN ASH VALUES WHERE CALCIUM CARBONATE IS A CONSTITUENT OF THE COAL

mination is of far-reaching importance. It affects in a very material manner any method of reference to a unit of combustible, especially such as is made use of by the engineering profession under the designation of "ash and moisture-free" material. It also seriously affects those results in a coal analysis which are obtained indirectly by difference. For example, the value for fixed carbon is thus estimated. Any error in the ash determination is therefore loaded upon this constituent. An equally erroneous feature accompanies the ultimate analysis where the total carbon is measured as CO₂. The carbon dioxide combined with the calcium oxide in the coal is thus made to appear in the final result as augmenting the value for total carbon. But it is not the purpose here to discuss the effect of this possible source of error. The immediate problem in hand is to arrive at the actual non-coal or inorganic substance as an essential factor in calculating the values for unit coal. The obvious suggestion, therefore, would be to make a determination of all possible volatile constituents, especially the CO₂ and Cl and augment the ash values found at the higher temperature by these percentages. Such an analysis was made, as shown in Table 8. A complete

analysis was also made showing all the mineral constituents, so that any bearing these factors might have, could be studied simultaneously with the question of the true ash or inorganic matter.

In considering the probable reactions of the ash at a fusion temperature, it would be conceded at once that all of the CO. would be driven off. This, therefore, would be the first increment to add to the ash as above determined. Similarly, the chlorine present would be driven off. Evidently, in these particular samples, the larger portion of the chlorine is combined as CaCl₂, which was not washed out of the texture of the coal after being subjected to the floating process in a CaCl₂ solution. But whether joined as NaCl or CaCl₂, it is probable that the ultimate result is the formation of silicates of sodium and calcium with liberation of chlorine. Hence it seems proper to add a second increment to the ash values, that of the chlorine percentages. When we come to a disposition of the SO_3 value, the case is not so clear. Ordinarily, it should be noted, the amount of sulphate present in a coal is so small as to be negligible, but it so happens that the samples selected for this particular series had been in laboratory storage for over a year, with the result, that when the ultimate constituents were all sought out, quite an appreciable amount of sulphate of iron had formed. Now the decomposition of this material is easily effected at a temperature above 300°. Hence the indication would seem to be that a further correction for the ash content should be made by adding the percentage found for this constituent. However, it should be borne in mind that calcium carbonate is present in sufficient quantity to take care of this SO_3 by formation of $CaSO_4 + CO_2$. By testing artificial mixtures of calcium carbonate and ferrous sulphate, with and without the addition of organic matter, the residual fusion showed sufficient sulphate remaining as CaSO₄ to warrant the conclusion that no correction should be made for the SO₃ found to be present in the original coal.

In view of these facts, therefore, the calculation for the unit

B. t. u.	$\begin{array}{c} 13475\\ 10733\\ 10733\\ 11122\\ 12634\\ 8856\\ 12796\\ 9216\end{array}$)S ^{22/40} S.)	Diff. - 5 - 6 - 21 - 336
Total S	$\begin{array}{c} 1.44\\ 5.00\\ 2.65\\ 7.00\\ 1.96\\ 2.39\\ 4.71\\ 4.71 \end{array}$	"UNIT COAL"	$\frac{\mathrm{B.t.u.} - 5000\mathrm{S}}{11.00 -} (1.08 \mathrm{Ash} (\mathrm{corr.}) + {}^{22}/_{40} \mathrm{S.})$	14219 14214 14742 14736 14736 14030 14009 14508 14172
CO ₂	$\begin{array}{c} 3.68\\ 3.68\\ 2.38\\ 5.21\\ 7.35\\ 7.35\\ \end{array}$		$\frac{B.t.}{1.00-}$ (1.08 Asl	4444444
SO3	1.05 1.05 .81 .20 .23 .23 .99	ARBONATH	ı. Ash	Diff. - 1061 - 866 - 1507 - 2132
CI	$\begin{array}{c} 1.00\\ 1.15\\ 1.15\\17\\31\\ 1.41\\ 1.20\\ 1.07\\ 1.17\end{array}$	ALCIUM CARBO "PURE COAL"	$\frac{\mathrm{B.t.u.}}{1.00-\mathrm{Ash}}$	$\begin{array}{c} 13969\\ 12908\\ 14528\\ 13662\\ 13662\\ 13618\\ 12111\\ 14073\\ 11941 \end{array}$
Na	.12 .31 .07 .23 .23 .19	н High C	t. u.	13475 10733 10733 11363 11122 8856 12796 9216
CaO MgO	$\begin{array}{c} .85\\ 6.50\\ .40\\ 3.88\\ 8.36\\ 1.29\\ 10.20 \end{array}$	ES WITH	B. t	
${\rm Fe_2O_3^3}$ ${\rm Al_2O_3^3}$	$\begin{array}{c} 1.71\\ 7.91\\ 2.63\\ 9.48\\ 9.49\\ 9.49\\ 7.09\\ 7.09 \end{array}$	UNIT COAL" IN SAMPLES IN PER CENT OF DRY COAL	CI	1.00 1.15 1.17 1.41 1.41 1.20 1.07
		AL'' IN ENT OF	CO2	$\begin{array}{c} & . & . \\ & . & . \\ & . & . \\ & . & . \\ & . & .$
SiO ₂	$\begin{array}{c} .98\\ 2.44\\ 5.23\\ 3.33\\ 5.46\\ 5.64\end{array}$	IIT Co. Per Ci	er- igh ht	
Ash by Blasting to Constant Weight and Fusion in Pt. Cruc.	$\begin{array}{c} 3.54 \\ 16.85 \\ 5.96 \\ 18.59 \\ 7.23 \\ 7.23 \\ 20.88 \\ 20.88 \\ 22.93 \end{array}$	TABLE 9-"UNIT COAL" IN SAMPLES WITH HIGH CALCIUM CARBONATE IN PER CENT OF DRY COAL "PURE COAL"	Ash as Deter- mined by High Fusion to Con- stant Weight	$\begin{array}{c} 3.54\\ 16.85\\ 16.85\\ 18.596\\ 7.23\\ 26.88\\ 20.88\\ 22.93\end{array}$
Description	Float Sink Float Sink Float Sink Sink Sink	TAI	DESCRIPTION	Float Sink Float Sink Float Float Float
Lab. No.	734 734 1095 11095 11178 11178 11403 1403		Lab. No.	734 734 1095 11095 11178 11178 11403 1403
Tab. No.	-0645078		Tab. No.	100410070

TABLE 8-ASH COMPOSITION-IN PER CENT OF DRY COAL

coal values on these samples was based on an ash content in which the ash as weighed had been subjected to a very high temperature in a platinum crucible, and continued until a constant weight was secured, and the ash fused; to this was added the CO_2 present in the dry coal, and also the factor for chlorine. The formula already given, therefore, was simply modified by the above conditions, and would be expressed as follows:

Unit Coal =
$$\frac{\text{Indicated B. t. u.} - 5000 \text{ S}}{1.00 - [(\text{Ash} + \text{CO}_2 + \text{Cl}) \times 1.08 + 22/40 \text{ S}]}$$

The results of this calculation are given in Table 9, with a comparison wherein the values are calculated to "pure coal" or the "ash and water-free" basis and to the "unit coal" with the ash corrected for the CO_2 and Cl present.

Concerning these results, the proposed correction of the ash by addition of the CO₂ and Cl would seem to meet the conditions as indicated by the close agreement of the "unit coal" values. The last sample, No. 8 of the table, is not in so good agreement as could be wished. The only explanation to be suggested at the present time is that the very high per cent of calcium carbonate, 16.67 per cent, would seem to require that a correction be made in the calorimetric value to allow for the heat of decomposition required to separate that amount of calcium carbonate into its constituent parts. This would mean that 786.6×16.67 per cent or 131 B. t. u. would represent the heat of dissociation for the calcium carbonate present. This amount, added to the indicated heat, would represent the total heat developed in the combustion as 9112 B. t. u. This amount introduced into the formula would show 14 383 B. t. u. as the unit coal value, or a difference from the low ash sample of 112 units instead of 336 as in the table. More study of this extreme type of coal must be made, and upon fresh samples with the sulphate constituent eliminated, before a final judgment can be formulated as to the adaptability of the formula to such cases. The remarkable conformity of the values in three of the four cases would seem to

ILLINOIS ENGINEERING EXPERIMENT STATION

argue strongly in favor of the corrections for CO_2 and Cl as covering the case. In consideration of the facts set forth, therefore, in these last tables, it was deemed necessary to make an extended inspection of the coals of the State with special reference to their content of carbonate and chlorine. About sixty samples were selected and in addition to the usual ash determination, analysis

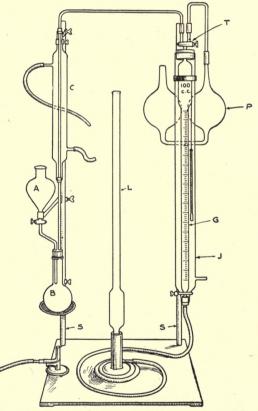


FIG. 1 APPARATUS FOR DETERMINING CO2

was made of the ash constituent, namely, silicon, iron, alumina, lime, and magnesia. In addition, a determination was made of the chlorine and carbonate present. The chlorine was determined by digesting 2 grams of the pulverized coal on a steam

 $\mathbf{28}$

bath with about 200 cc. of water, filtering, making up to 500 cc., and titrating an aliquot part with standard silver nitrate solution.

The carbonate was determined by weighing out 5 grams of coal and treating with acid in the apparatus designed for such work as shown in Fig. 1. This is an improved form of the apparatus described in Bulletin 7 of the Engineering Experiment Station, for the volumetric estimation of carbon dioxide, by absorbing the same in a pipette, as P of the figure, and measuring the contraction in the jacketed burette.

From the values thus obtained for these two constituents, it will be seen from the table that the high amounts of both are distributed quite irregularly throughout the State, and very frequently in a sufficiently high amount to make the introduction of their values into any careful analytical work on such coals an essential feature, if trustworthy results are to be forthcoming.

An answer is thus afforded, in such cases at least, to the query of the Committee of the American Chemical Society on Coal Analysis¹: "Are carbonates likely to be present in the ash in such amount that heating over a blast lamp would lessen the weight appreciably?" An affirmative answer is also indicated in Table 7, where the weight of ash is lessened on blasting by 11.31 per cent of the coal, as in sample 8.

A further suggestion results from these frequent indications of carbon dioxide. The high carbonate content is accompanied by a high lime factor and the question at once occurs as to whether this factor for CO_2 might not serve as an index of fusibility of the ash quite as accurately as the content of sulphur, since high lime is as promotive of slagging as iron. Numerous tests on the fusibility of ash have confirmed this idea. It is hoped that this matter of the fusibility of coal ash may be taken up for further study in the near future.

¹Jour. Am. Chem. Soc. Vol. 20, p. 284, 1898.

ANALYSIS OF COAL ASH

(Including Values for CO₂ and Cl)

	0	· • • • • • • • • • • • • • • • • • • •
ASH SION	MgO	100/28/2012/2012/2012/2012/2012/2012/201
NTS OF GH FU	CaO	$\begin{array}{c} 347.0\\ 34$
Constitue INED BY HI Per Cent	Al_2O_3	$\begin{smallmatrix} 122\\ 122\\ 122\\ 122\\ 122\\ 122\\ 122\\ 122$
MINERAL CONSTITUENTS OF ASH AS OBTAINED BY HIGH FUSION Per Cent	SiO ₂ Fe ₂ O ₃	$\begin{array}{c} \textbf{41}\\ \textbf{41}\\ \textbf{42}\\ \textbf{43}\\ \textbf{44}\\ \textbf{45}\\ \textbf{45}\\ \textbf{46}\\ $
MINER. AS OI	SiO_2	$\begin{array}{c} 228.8\\ 228.8\\ 222.8\\ 233.3\\ 23$
tter	CI	None .27 .31 .15 .15 .15 .14 None .08 .08 .08 .08 .08 .08 .324 None .19 None
Ash and Volatile Inorganic Matter Dry Coal Per Cent	CO ₂	$\begin{smallmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ $
Ash a Inorgi Dr	Ash by Usual Method	8.17 8.17 10.58 10.68 10.68 11.54 11.58 11.5
	Seam No.	٥ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩ ٩
DESCRIPTION	LOCATION	S. Wilmington, Grundy Co Coal City, Grundy Co Hollis, Peoria Co Spillerton, Williamson Co Equality, Gallatin Co. Eldorado, Saline Co. Eldorado, Saline Co. Harrisburg, Saline Co. Ledford, Saline Co. Ledford, Saline Co. Ledford, Saline Co. Ledford, Sangamon Co. Springfield, Sangamon Co. Springfield, Sangamon Co. Edwards Sta., Peoria Co. Maxwell, Peoria Co. Maxwell, Peoria Co. Edwards Sta., Peoria Co. Maxwell, Peoria Co. Edwards Sta., Peoria Co. Pekin, Tazewell Co.
Lab.	No.	$\begin{array}{c} & 733\\ & 733\\ & 734\\ & 1092\\ & 1092\\ & 1095\\ & 10095\\ & 10095\\ & 10095\\ & 10095\\ & 10095\\ & 10095\\ & 11110\\ & 1110\\ & 1101$
Tab.	No.	1004202001111111100001001

ANALYSIS OF COAL ASH

(Including Values for CO₂ and Cl)-(Continued)

Ash sion	MgO	
TTS OF GH FUS	Ca0	251 312 251 251 251 251 251 251 251 251 251 2
CONSTITUEN INED BY HI Per Cent	Al ₂ O ₃	$\begin{array}{c} 18.5\\ 18.5\\ 13.52\\ 111111111111111111111111111111111111$
Mineral Constituents of Ash as Obtained by High Fusion Per Cent		226 226 226 226 227 221 221 221 221 221 221 221 221 221
MINERA AS OB	SiO ₂ Fe ₂ O ₃	$\begin{array}{c} 447.9\\ 447.9\\ 559.0\\ 55$
	CI	.15 .15 .15 .15 .15
Ash and Volatile Inorganic Matter Dry CoAL Per Cent	c02	$\begin{array}{c} 1.08 \\ 147 \\ 147 \\ 119 \\ 123 \\ 136 \\ 133 \\ 136 \\ 133 \\ 136 $
Ash and Volatile Inorganic Matter Dry Coat Per Cent	Ash by Usual Method	9.15 9.15 11.22 12.23 11.22 11
	Seam No. 1	444000000000000000000000000000000000000
DESCRIPTION	LOCATION	Westville, Vermilion Co. Westville, Vermilion Co. Thayer, Sangamon Co. Collinsville, St. Clair Co. Collinsville, St. Clair Co. Collinsville, St. Clair Co. Collinsville, St. Clair Co. Mt. Olive, Macoupin Co. Mt. Olive, Macoupin Co. Mt. Olive, Macoupin Co. Mt. Olive, Macoupin Co. Collinsville, St. Clair Co. Belleville, St. Clair Co. Lebanon, St. Clair Co. Lebanon, St. Clair Co. Lebanon, St. Clair Co. Donkville, Madison Co. Troy, Madison Co. Troy, Madison Co. Troy, Madison Co. Prenton, Clinton Co. Troy, Madison Co. Donkville, Madison Co. Troy, Madison Co. Donkville, Madison Co. Troy, Madison Co. Donkville, Donkville, Madison Co. Donkville, Madison Co. Donkville
Lab.	No.	557 558 7256 7255 7255 735 735 735 735 735 735 735 735 735 7
Tab	No.	410 422 423 333 332 410 410 410 423 333 332 332 332 332 332 332 332 410 42 42 42 42 42 42 42 42 42 42 42 42 42

ANALYSIS OF COAL ASH

(Including Values for CO2 and Cl)-(Concluded)

MINERAL CONSTITUENTS OF ASH AS OBTAINED BY HIGH FUSION Per Cent	MgO	5700807008100758081000 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	CaO	0470801440000108447
	Al ₂ O ₃	2280 2280 2280 2280 2280 2280 2280 2280
	SiO ₂ Fe ₂ O ₃	122258845007355858710887
	SiO ₂	8222828292020202020202020202020202020202
Ash and Volatile Inorganic Matter Dry CoAL Per Cent	C	
	CO2	1.28 1.28 1.20 1.47 1.20 1.47 1.20
	Ash by Usual Method	8.48 10.13 7.66 10.65 11.50
	Seam No.	
DESCRIPTION	LOCATION	DuQuoin, Perry Co. Herrin, Williamson Co. Herrin, Williamson Co. Sesser, Franklin Co. Marion, Williamson Co. Marion, Williamson Co. Herrin, Williamson Co. Galatia, Saline Co. Norris City, White Co. Norris City, White Co. Lincoln, Scrgs. Lancoln, scrgs. Lincoln, scrgs. Lincoln, scrgs. La Salle, W. Scrgs. Lancoln, scrgs. Lancoln, scrgs. La Salle, W. Scrgs. Pawnee, Lump. Pawnee, Lump. Vigo County, Indiana. Vigo County, Indiana. Sullivan Co., Indiana.
Lab. No.		422 459 460 461 461 461 1121 1121 1121 6123 6133 6133 6133 61
Tab. No.		44444444888888888888888888888888888888

V. SUMMARY

The principles developed by the foregoing discussion may be stated as follows:

1. Ordinarily the total inorganic or non-coal constituent is expressed by the formula

Total Inorganic Matter = M + 1.08 A + 22/40 Sin which M = moisture, A = ash, and S = sulphur. The formula for calculating the heat value for unit coal, therefore, basing the calculation upon wet coal values, would be

B. t. u. of Unit Coal = $\frac{\text{Indicated (wet) B. t. u.} - 5000 \text{ S}}{1.00 - (M + 1.08 \text{ A} + 22/40 \text{ S})}$

and for dry coal:

B. t. u. of Unit Coal =
$$\frac{\text{Indicated (dry) B. t. u.} - 5000 \text{ S}}{1.00 - (1.08 \text{ A} + 22/40 \text{ S})}$$

2. A coal of unknown character as to its carbonate content should be subjected to a carbonate determination readily effected by liberating the CO_2 with acid and measuring the same by weight or volume. Where carbonates are found to exist in any considerable quantity, say over 0.3 per cent CO_2 , the ash determination should be made by blasting in a platinum crucible to constant weight, and the ash as thus determined corrected by adding the weight found for CO_2 . Further, since this method of doriving the weight of ash will drive off the chlorine present, this constituent should also be determined and the amount as Cl added to the weight of ash.

It has been possible to apply the foregoing principles to a large number of analyses which have been made in this laboratory. Some from the same mine extending over a considerable period of time afford a good opportunity of verifying the constancy of the unit coal values from the same mine. Others from the same geological seam, extending over a considerable area, as well as those from neighboring mines, serve to demonstrate a positive relationship and, so far as they are available, establish the unit values for their respective regions. An extension of these data has been prepared and arranged in tables following this discussion. In addition to the results obtained in our own laboratory, the various coal values as published by the Ohio State Survey¹ (Appendix A) and the United States Geological Survey² (Appendix B) have been calculated to unit values by the formula already developed and indicated at the head of the column for "Unit Coal." A most interesting study is there made possible of the constancy of values for a given type of coal or for a given region.

The application which the facts of the tables may be made to serve are many and of far-reaching importance. The real value and the extent of this service hinge upon the accuracy with which we may differentiate between the actual or unit coal and the true ash content. It is believed that the methods and formulas herein proposed are accurate within the limits of variation, inherent in the composition of the unit substance itself, and in the manipulation and methods of analysis employed. Concerning this latter point, it is obviously impossible in applying the calculations to analytical values already published, to take account of errors in ash determination, due for example to the presence of carbonate of lime. Some of the discrepancies in unit values, therefore, may be due to this fact. Moreover, some of the samples grouped by counties may be from different seams and hence show a difference in their unit values. It has not been practicable to give more detail of location or deposit than is contained in the tables, but the facts thus presented seem to have sufficient value to warrant their publication in this form.

An inspection of Table 10, (p. 31), shows a number of coals with over 2 per cent of CO_2 present. This represents approximately 5 per cent of calcium carbonate. In the Mahler type of calorimeter, this material is decomposed, representing a loss of heat amounting to about 40 B. t. u. for each 5 per cent of calcium carbonate present. A question is therefore raised as to the desirability of correcting heat values obtained by that instrument, to take account of this reaction in the calorimeter.

²United States Geological Survey, Bulletins No. 261, No. 290, and No. 332.

 $\mathbf{34}$

¹Geological Survey of Ohio, Fourth Series, Bul. No. 9, 1908.

VI. CONCLUSIONS

1. The actual or unit coal of a given deposit or region is remarkably uniform in composition, as shown by the constancy of heat values, when calculated to such unit substance.

2. The true percentage content of the actual or unit coal hinges upon the correct determination of the inorganic constituents of the coal. The present methods of analysis fail to take account of such constituents as the hydration of the shaley or clayey portions of the ash or the carbon dioxide content of earthy carbonates. The presence of chlorine compounds may sometimes be sufficient in amount to require consideration and estimation.

3. Coal with an ash of unknown composition should be examined for carbonates and chlorides. If the combined amount of these constituents approximates 0.5 per cent, the ash determination should be made at a temperature sufficiently high for their complete elimination, and a correction made for the ash value thus obtained by adding the amount of CO_2 and Cl found.

4. Apart from the corrections which may be called for on account of the presence of CO_2 or Cl, a factor for hydration is necessary, amounting to 8 per cent of the ash as determined, minus the ferric oxide resulting from the decomposition of the iron pyrites.

5. The assembling of the corrections indicated may be embodied in a simple formula, easy of application, and under two headings as follows:

For coals free from carbonates and chlorides

Unit B. t. u. = $\frac{\text{Indicated Dry B. t. u.} - 5000 \text{ S}}{1.00 - (1.08 \text{ Ash} + 22/40 \text{ S})}$

For coals with carbonates and chlorides

Unit B. t. u =

Indicated Dry B. t. u. -5000 S 1.00 - [(Ash at high temp. + CO₂ + Cl) 1.08 + 22/40 S.]

ILLINOIS ENGINEERING EXPERIMENT STATION

VII. TABULATION OF CALCULATED VALUES FOR UNIT COAL

From the tables following, (Tables 11 to 19 inclusive), not only is there evidence of a constancy of values for a given area, but, conversely, a given type of fuel over widely separated areas has a value which varies between relatively narrow limits and may be made to serve as an index of the kind or type and probably the region from which the material comes. From an inspection of these and other data a tentative series of values defining the suggested limits for the generally recognized fuel types is given in Table 11.

TABLE 11

CLASSIFICATION OF FUEL TYPES BY HEAT VALUES FOR UNIT OR ACTUAL ORGANIC SUBSTANCE

Cellulose and wood
Peat
Lignite-brown
Lignite-black
Sub-bituminous Coal
Bituminous Coal (mid continental field)14200 to 15000
Bituminous Coal (eastern field)15000 to 16000
Semi-anthracite and Semi-bituminous
Anthracite

COAL RESULTS

From Continuous Deliveries, September 1, 1907 to September 1, 1908. Each Sample Represents 5 Cars or 250 Tons, and is a Composite of 5 Separate Samples.

Shipments all from the Same Mine, Christian Co., Ill.

		es as Rec	"Unit Coal" Basis B. t. u. – 5000 S	Variation from Av- erage	
No	sture Ash	Sulphur	B. t. u.	$\frac{1.00 - (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})}{1.02 \text{ S.}}$	B. t. u.
934 10 935 1 936 1 937 1 938 1 939 1 939 1 940 1 941 1 942 1 943 1 944 1 945 1 944 1 945 1 944 1 945 1 945 1 945 1 945 1 945 1 945 1 945 1 945 1 945 1 947 1 948 1 949 1 957 1 990 1 1071 1 1072 1 1075 1 1076 1 1180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 4.39\\ 4.87\\ 3.99\\ 4.01\\ 4.43\\ 4.19\\ 4.43\\ 4.10\\ 4.55\\ 5.35\\ 4.36\\ 4.32\\ 4.38\\ 4.15\\ 4.27\\ 3.91\\ 3.70\\ 4.18\\ 4.39\\ 4.18\\ 4.19\\ 4.71\\ 4.23\\ 4.51\\ 4.46\\ 4.15\\ 4.66\\ 4.12\\ 4.95\\ 4.36\\ 4.00\\ 4.85\\ 3.97\\ 5.01\\ 4.55\\ 4.36\\ 4.00\\ 4.85\\ 3.97\\ 5.01\\ 4.55\\ 4.36\\ 4.34\\ 4.27\\ 4.54\\ 4.35\\ \end{array}$	9665 10104 10082 9845 9680 9883 9709 9971 9724 10211 10278 9825 9825 9896 10076 9880 9773 9830 9747 9840 9842 9868 9837 10076 9842 9868 9837 10076 9842 9868 9837 10076 9840 9842 9868 9837 10076 9844 9857 9497 9964 9556 9925 9893 9795 9884 9763 9464	$\begin{array}{c} 14313\\ 14564\\ 14539\\ 14507\\ 14499\\ 14576\\ 14643\\ 14533\\ 14580\\ 14577\\ 14554\\ 14608\\ 14420\\ 14537\\ 14501\\ 14510\\ 14437\\ 14420\\ 14537\\ 14472\\ 14483\\ 14664\\ 14580\\ 14558\\ 14602\\ 14543\\ 14563\\ 14558\\ 14505\\ 14563\\ 1457\\ 14478\\ 14472\\ 14478\\ 14478\\ 14472\\ 14478\\ 14457\\ 14415\\ 14462\\ 14458\\ 14522\\ 14536\\ 14550\\ 14424\\ 14423\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3$	$\begin{array}{r} -160\\ +91\\ +66\\ +34\\ +26\\ +103\\ +170\\ +60\\ +107\\ +104\\ +81\\ +135\\ -53\\ +64\\ +28\\ +37\\ -36\\ -1\\ +210\\ +191\\ +107\\ +185\\ +129\\ +70\\ +32\\ +77\\ +128\\ +129\\ +70\\ +32\\ +71\\ -1\\ -16\\ -58\\ -11\\ -15\\ +49\\ +63\\ +77\\ -49\\ +60\\ \end{array}$

ILLINOIS ENGINEERING EXPERIMENT STATION

Lab. No.	Analyses	of Sample Ash	sulphur	"Unit Coal" Basis B. t. u 5000 S 1.00 -	Variation from Av- erage B. t. u.	
1205						
1205 1272	$14.13 \\ 15.81$	$16.31 \\ 15.18$	4.85	9746 9650	14488 14399	+ 15 - 74
1273	15.21	14.45	4.04	9910	14498	+ 25
1274	15.40	16.08	5.03	9560	14440	- 33
1275	14.04	16.44	4.52	9694	14409	- 64
1276	14.35	18.13	4.62	9315	14299	-174
1326 1327	$14.81 \\ 13.46$	16.56	4.22 4.65	9540 9505	14354 14335	-119 - 138
1327	13.40	17.53	4.67	9568	14373	-100
1329	14.98	14.37	3.90	9928	14451	- 22
1330	14.59	16.63	4.34	9614	14444	- 29
1331	14.10	17.42	4.82	9592	14511	+ 38
1332	13.13	16.12	4.58	9783	14272	-201
1447	13.28	17.10	4.19	9670	14346	-127
1448	12.62	18.18	4.46	9590	14344	-129
1449	13.31	18.15	4.50	9584	14485	+ 12
$1450 \\ 1451$	$13.21 \\ 13.32$	$16.16 \\ 17.01$	4.21 4.28	9852 9656	14385 14313	-88 -160
1695	15.32	17.01	4.28	9030	14313	-132
1696	16.12	13.19	3.76	9890	14339	-132
1697	15.62	14.29	3.61	9782	14338	-135
1759	14.02	15.62	4.43	9817	14392	- 81
1760	13.83	16.54	4.49	9676	14354	-119
1789	13.49	19.41	4.07	9331	14416	- 57
1832	14.09	17.22	4.17	9605	14451	- 22
1833	13.56	17.07	3.93	9704	14439	- 34
1834	13.56	17.50	4.24	9590	14381 -	- 92
Av	13.65	16.58	4.35	9779	14475	± 82

TABLE 12

COAL RESULTS-(Concluded)

VIN'SI

COAL RESULTS

From Continuous Deliveries September 1, 1908, to May 1, 1909 Each Sample represents 300 Tons Shipments all from the Same Mine, Vermilion Co., Ill.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Coal'' sis Variation from Av- erage
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+\frac{22}{40}$ S.)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

* Probably due to error in ash determination.

ILLINOIS ENGINEERING EXPERIMENT STATION

Lab. No.	ANALYSE	s of Sampli	es as Rec	"Unit Coal" Basis B. t. u 5000 S 1.00 -	Variation from Av- erage B. t. u.	
	Moisture	Ash	Sulphur	B. t. u.	$(1.08 \text{ Ash} + \frac{22}{40} \text{ S.})$	D. t. u.
$\begin{array}{c} 2057\\ 2071\\ 2072\\ 2073\\ 2074\\ 2106\\ 2107\\ 2108\\ 2145\\ 2146\\ 2147\\ 2159\\ 2160\\ 2161\\ 2178\\ 2179\\ 2180\\ 2232\\ 2233\\ 2234\\ 2235\\ 2304\\ 2305\\ 2324\\ 2325\\ 2324\\ 2325\\ 2326\\ 2369\\ 2370\\ 2371\\ 2416 \end{array}$	$\begin{array}{c} 13.61\\ 12.16\\ 12.22\\ 13.10\\ 12.47\\ 13.31\\ 14.07\\ 13.12\\ 12.81\\ 13.97\\ 13.19\\ 13.30\\ 12.20\\ 13.12\\ 14.83\\ 14.01\\ 13.03\\ 14.07\\ 13.26\\ 12.26\\ 13.02\\ 15.07\\ 14.22\\ 15.16\\ 15.33\\ 11.99\\ 12.00\\ 14.29\\ 13.28\\ 13.55\\ \end{array}$	$\begin{array}{c} 15.71\\ 18.31\\ 18.93\\ 20.38\\ 19.37\\ 17.49\\ 17.50\\ 17.25\\ 16.82\\ 15.64\\ 17.68\\ 17.98\\ 20.14\\ 17.61\\ 19.77\\ 17.92\\ 19.92\\ 17.40\\ 19.54\\ 18.90\\ 17.94\\ 19.03\\ 16.98\\ 16.60\\ 19.10\\ 18.42\\ 18.74\\ 17.33\\ 18.55\\ \end{array}$	$\begin{array}{r} 4.13\\ 3.98\\ 3.93\\ 3.99\\ 4.04\\ 4.03\\ 4.43\\ 4.41\\ 3.98\\ 4.76\\ 4.21\\ 4.17\\ 4.78\\ 4.34\\ 3.90\\ 4.13\\ 4.11\\ 4.25\\ 3.90\\ 4.13\\ 4.11\\ 4.25\\ 3.95\\ 4.46\\ 4.81\\ 3.72\\ 3.77\\ 4.13\\ 3.92\\ 4.63\\ 4.17\\ 4.48\end{array}$	10128 9986 9857 9520 9791 9816 9742 9987 10066 9813 9805 9831 9628 9900 9319 9858 9503 9815 9381 9611 9706 9381 9706 9792 9801 9900 9498 9897 9630	$\begin{array}{c} 14775\\ 14856\\ 14821\\ 14864\\ 14892\\ 14660\\ 14739\\ 14837\\ 14764\\ 14632\\ 14668\\ 14805\\ 14805\\ 14805\\ 14805\\ 14805\\ 14805\\ 14790\\ 14790\\ 14793\\ 14993\\ 14710\\ 14813\\ 14483\\ 14446\\ 14547\\ 14730\\ 14614\\ 14771\\ 14849\\ 14735\\ 14712\\ 14727\\ 14744\\ 14706 \end{array}$	$\begin{array}{r} + 19 \\ + 100 \\ + 65 \\ + 108 \\ + 136 \\ - 96 \\ - 17 \\ + 81 \\ + 8 \\ - 124 \\ - 68 \\ + 49 \\ + 34 \\ + 37 \\ + 237* \\ - 46 \\ + 57 \\ - 273* \\ - 310* \\ - 209 \\ - 142 \\ + 15 \\ + 93 \\ - 21 \\ - 44 \\ - 29 \\ - 12 \\ - 50 \end{array}$
Av	13.30	17.79	4.18	9828	14756	± 86

TABLE 13

COAL RESULTS—(Concluded)

* Probably due to error in ash determination.

40

COAL RESULTS

Run-of-Mine Coal from Two Mines, Boulder Co., Colo.

No.	Analyses (of Sampli	es as Ri	"Unit Coal" Basis B. t. u 5000S	Variation from Av- erage B. t. u.	
	Moisture	Ash	Sul.	B. t. u.	$(1.08 \text{ Ash} + {}^{22}\!/_{40} \text{ S.})$	D. t. u.
$ \begin{array}{r} 13 \\ 15 \\ 19 \\ 20 \\ 22 \\ 24 \\ 25 \\ 27 \\ 30 \\ 31 \\ 35 \\ 37 \\ 5 \\ 7 \\ 8 \\ 9 \\ 13 \\ 18 \\ 19 \\ 34 \\ 38 \\ 42 \\ 45 \\ 76 \\ \end{array} $	$\begin{array}{c} 19.59\\ 20.18\\ 20.26\\ 19.64\\ 19.49\\ 19.43\\ 19.12\\ 20.43\\ 19.65\\ 19.91\\ 20.32\\ 19.71\\ 20.23\\ 19.73\\ 19.64\\ 19.83\\ 20.06\\ 20.08\\ 19.96\\ 19.99\\ 19.38\\ 19.96\\ 20.56\\ 18.09\\ \end{array}$	$\begin{array}{c} 8.38\\ 8.15\\ 6.85\\ 6.83\\ 7.23\\ 5.77\\ 7.16\\ 6.40\\ 8.55\\ 6.75\\ 7.85\\ 4.88\\ 5.97\\ 5.54\\ 4.88\\ 5.97\\ 5.54\\ 4.82\\ 5.63\\ 6.55\\ 5.11\\ 6.95\\ 5.60\\ 5.56\end{array}$.52 .39 .38 .48 .38 .42 .36 .41 .38 .44 .38 .44 .38 .42 .36 .41 .38 .44 .38 .44 .38 .40 .27 .25 .26 .41	$\begin{array}{c} 9349\\ 9362\\ 9434\\ 9519\\ 9580\\ 9625\\ 9620\\ 9512\\ 9271\\ 9425\\ 9431\\ 9779\\ 9373\\ 9598\\ 9497\\ 9573\\ 9551\\ 9632\\ 9588\\ 9441\\ 9712\\ 9422\\ 9428\\ 9835\\ \end{array}$	$\begin{array}{c} 13118\\ 13193\\ 13053\\ 13053\\ 13054\\ 13192\\ 12958\\ 13164\\ 13102\\ 13048\\ 12958\\ 13260\\ 13046\\ 12761\\ 12842\\ 12859\\ 12911\\ 12917\\ 12902\\ 12972\\ 12955\\ 12939\\ 12998\\ 12853\\ 12907\\ \end{array}$	$\begin{array}{c} +120\\ +195\\ +55\\ +56\\ +194\\ -40\\ +166\\ +104\\ +50\\ -40\\ +262\\ +48\\ -237\\ -156\\ -139\\ -87\\ -81\\ -96\\ -26\\ -43\\ -59\\ 00\\ -145\\ -91\end{array}$
Av	19.80	6.37	.36	9523	12998	±104

COAL RESULTS

Run-of-Mine Coal from One Mine, Las Animas Co., Colo.

No.	ANALYSES	of Sampl:	es as R	"Unit Coal" Basis B. t. u 5000S	Variation from Av- erage	
	Moisture	Ash	Sul.	B. t. u.	$1.00 - (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})$	B. t. u.
$\begin{array}{c} 2\\ 10\\ 12\\ 14\\ 15\\ 16\\ 21\\ 23\\ 25\\ 33\\ 37\\ 41\\ 44\\ 46\\ \end{array}$	$\begin{array}{c} 2.25\\ 2.40\\ 2.51\\ 2.63\\ 2.93\\ 2.57\\ 2.80\\ 2.26\\ 2.43\\ 2.02\\ 2.95\\ 3.65\\ 2.48\\ 2.19\end{array}$	$\begin{array}{c} 9.72\\ 11.33\\ 14.49\\ 11.32\\ 11.53\\ 12.81\\ 20.17\\ 9.45\\ 14.86\\ 11.14\\ 13.01\\ 12.22\\ 12.77\\ 11.57\\ \end{array}$	$\begin{array}{c} .89\\ .68\\ .68\\ .61\\ .60\\ .65\\ .60\\ .63\\ .59\\ .63\\ .58\\ .61\end{array}$	$\begin{array}{c} 13309\\ 13066\\ 12547\\ 13033\\ 13065\\ 12842\\ 11643\\ 13297\\ 12572\\ 13025\\ 12532\\ 12532\\ 12584\\ 12722\\ 12904 \end{array}$	$\begin{array}{c} 15288\\ 15334\\ 15359\\ 15332\\ 15465\\ 15386\\ 15468\\ 15214\\ 15448\\ 15144\\ 15121\\ 15121\\ 15159\\ 15218\\ 15150\end{array}$	$\begin{array}{rrrr} - & 4 \\ + & 42 \\ + & 67 \\ + & 40 \\ + & 173 \\ + & 92 \\ + & 176 \\ - & 78 \\ + & 156 \\ - & 148 \\ - & 171 \\ - & 133 \\ - & 74 \\ - & 142 \end{array}$
Av	2.58	12.59	.64	12796	15292	±107

Illinois "No. 2" Coal

Lab. No.	LOCALITY	Total Mois- ture		FERRED RY CO		"Unit Coal" Basis B. t. u 5000 S
			Ash	Sul.	B. t. u.	$1.00 - (1.08 \text{ Ash} + \frac{22}{40}\text{S.})$
1764 1769 1860 1869 1840 733 1787 734 1840 733 1787 1875 1878 1875 1785 1785 1785 1785	Bureau Co. Bureau Co. Brown Co. Christian Co. Fulton Co. Green Co. Grundy Co. Grundy Co. Grundy Co. Grundy Co. Jackson Co. Jackson Co. Jackson Co. Jackson Co. La Salle Co. La Salle Co. La Salle Co. Marshall Co. Marshall Co. Marshall Co. Mercer Co. Peoria Co. Warren Co. Warren Co.	$\begin{array}{c} 15.61\\ 15.99\\ 15.60\\ 11.54\\ 15.37\\ 14.93\\ 15.04\\ 14.69\\ 17.18\\ 14.69\\ 17.18\\ 14.25\\ 12.73\\ 9.00\\ 14.03\\ 12.41\\ 15.36\\ 14.60\\ 13.54\\ 16.42\\ 12.02\\ 17.56\\ 12.05\\ 18.52\\ 16.18\end{array}$	$\begin{array}{c} 9.59\\ 8.96\\ 10.02\\ 10.08\\ 7.55\\ 12.43\\ 12.38\\ 8.17\\ 6.82\\ 5.82\\ 6.88\\ 4.99\\ 4.75\\ 6.87\\ 9.77\\ 8.89\\ 14.03\\ 7.29\\ 6.66\\ 8.18\\ 10.13\\ 11.58\\ 10.90\\ 5.45\\ 8.33\\ \end{array}$	$\begin{array}{c} 4.29\\ 4.04\\ 6.01\\ 4.38\\ 3.67\\ 5.79\\ 6.03\\ 3.62\\ 3.11\\ 1.83\\ 4.29\\ .79\\ .71\\ 2.02\\ 3.36\\ 3.23\\ 5.34\\ 1.90\\ 2.90\\ 3.23\\ 3.36\\ 5.47\\ 4.48\\ 3.20\\ 5.47\\ 4.48\\ 3.25\\ \end{array}$	$\begin{array}{c} 13008\\ 13191\\ 13099\\ 13148\\ 13558\\ 12581\\ 12538\\ 13217\\ 13450\\ 13436\\ 13516\\ 14113\\ 14115\\ 13799\\ 13033\\ 13329\\ 12241\\ 13539\\ 122666\\ 12666\\ 13650\\ 13361\\ 12866\\ 13361\\ 12866\\ 13361\\ 12866\\ 13361\\ 12866\\ 13361\\ 12866\\ 13361\\ 12866\\ 13361\\ 12866\\ 13361\\ 12866\\ 13361\\ 1286\\ 13361\\ 1286\\ 13561\\ 13561\\ 1286\\ 13561\\ 13561\\ 1286\\ 13561\\ 13561\\ 1286\\ 13561\\ 13561\\ 1286\\ 13561\\ 1286\\ 13561\\ 13561\\ 1286\\ 13561\\ 13561\\ 1286\\ 13561\\ 1286\\ 1286\\ 13561\\ 1286\\ 1286\\ 13561\\ 1286\\ 1286\\ 13561\\ 1286$	$\begin{array}{c} 14657\\ 14743\\ 14904\\ 14912\\ 14888\\ 14739\\ 14687\\ 14616\\ 14622\\ 14395\\ 14744\\ 14943\\ 14902\\ 14975\\ 14686\\ 14858\\ 14618\\ 14761\\ 14908\\ 14829\\ 14704\\ 14669\\ 14739\\ 14606\\ 14802\\ \end{array}$

Illinois "No. 5" Coal from Southern Part of State

Lab. No.	Locality	Total Referred to Mois- ture			"Unit Coal" Basis B. t. u 5000 S	
			Ash	Sul.	B. t. u.	$(1.00 - (1.08 \text{ Ash} + {}^{22}/_{40} \text{ S.})$
$\begin{array}{c} 1092\\ 1094\\ 1095\\ 1110\\ 1111\\ 1112\\ 1113\\ 1114\\ 1115\\ 1116\\ 896\\ 1809 \end{array}$	Gallatin Co. Saline Co. Williamson Co. Williamson Co.	$\begin{array}{c} 4 . 47 \\ 6 . 03 \\ 4 . 89 \\ 4 . 34 \\ 6 . 64 \\ 6 . 10 \\ 5 . 97 \\ 4 . 43 \\ 6 . 04 \\ 6 . 13 \\ 6 . 29 \\ 6 . 47 \end{array}$	$\begin{array}{c} 10.85\\ 10.54\\ 11.49\\ 12.68\\ 9.21\\ 8.99\\ 7.62\\ 9.04\\ 11.58\\ 9.89\\ 10.68\\ 12.53\\ \end{array}$	$\begin{array}{c} 3.72\\ 3.12\\ 4.16\\ 6.12\\ 2.35\\ 3.52\\ 2.30\\ 2.47\\ 3.26\\ 2.37\\ 3.86\\ 3.62 \end{array}$	$\begin{array}{c} 13235\\ 13212\\ 12931\\ 12879\\ 13367\\ 13415\\ 13700\\ 13450\\ 12942\\ 13298\\ 13073\\ 12853\\ \end{array}$	$\begin{array}{c} 15133\\ 15024\\ 14916\\ 15157\\ 14927\\ 15019\\ 15011\\ 14993\\ 14911\\ 14973\\ 14930\\ 15000 \end{array}$

PARR-WHEELER-UNIT COAL AND COAL ASH

TABLE 18

Illinois "No. 5" Coal from Central Part of State

Lab. No.	LOCALITY	Total Mois- ture		FERRED RY CO		"Unit Coal" Basis B. t. u 5000 S
			Ash	Sul.	B. t. u.	$\frac{1.00 - (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})}{(1.08 \text{ Ash} + \frac{22}{40} \text{ S.})}$
1404 1807 1808 1856 1771 1788 1569 <i>a</i> 1874 1749 1847 1848 1403 1407 1408 1409 1410 540 721 740 741 1794 1766 1767 1766 1767 1772 1773 1774 1786 1791 1792 1812 1812 1812	Fulton Co.Fulton Co.Fulton Co.Fulton Co.Fulton Co.La Salle Co.La Salle Co.Livingston Co.Macon Co.Peoria Co.Peoria Co.Peoria Co.Peoria Co.Sangamon Co.	$\begin{array}{c} 15.09\\ 15.03\\ 15.49\\ 15.44\\ 13.13\\ 12.73\\ 13.91\\ 14.07\\ 12.56\\ 14.15\\ 15.55\\ 14.29\\ 13.45\\ 14.73\\ 13.45\\ 14.73\\ 13.56\\ 14.39\\ 14.30\\ 13.13\\ 13.69\\ 14.30\\ 13.13\\ 13.69\\ 14.30\\ 14.44\\ 14.56\\ 15.42\\ 15.53\\ 14.89\\ 14.00\\ 14.44\\ 14.41\\ 14.18\\ 16.44\\ 15.38\\ 12.99\\ 11.26\\ 14.30\\ \end{array}$	Ash 12.52 12.98 13.43 12.22 12.19 12.15 11.33 11.82 14.06 13.54 12.20 15.46 16.25 15.23 16.66 14.78 10.76 13.64 12.75 12.47 14.26 12.48 11.32 12.48 11.32 12.85 14.73 12.68 11.32 12.83 11.71 11.80 14.67 10.69 12.91 10.14 12.76 13.63 11.49	Sul. 3.79 2.95 3.817 4.15 3.67 3.82 4.28 4.28 3.58 3.161 3.39 3.58 3.97 4.74 4.28 3.58 3.97 4.74 4.11 4.28 3.97 4.761 4.11 4.28 3.85 4.61 4.11 4.28 3.85 4.61 4.11 4.28 3.97 4.761 4.15 5.09 5.009 5.005 3.607 3.901 4.000 4.31 4.900 4.910 4.9000 4.9000 4.9000 4.9000 4.9000 4.9000 4.9000 4.90000 4.90000 4.90000 4.9000000000000000000000000000000000000	B. t. u. 12450 12389 12364 12666 12544 12853 12545 12549 12545 12299 12485 12299 12485 12094 12044 12189 12014 12257 12749 12304 12364 12369 12364 12281 12082 12340 12663 122550 12250 12358 12477 12550 12358 12477 12550 12155 12685 12301 12849 12709 12709 12709 12709 12673 12690	$\begin{array}{c} (1.08 \ {\rm Ash} \ + \ {}^{22}/_{40} \ {\rm S.}) \\ \hline \\ 14527 \\ 14510 \\ 14594 \\ 14740 \\ 14590 \\ 14929 \\ 14427 \\ 14529 \\ 14672 \\ 14672 \\ 14672 \\ 14675 \\ 14713 \\ 14725 \\ 14627 \\ 14635 \\ 14730 \\ 14589 \\ 14593 \\ 14468 \\ 14495 \\ 14477 \\ 14468 \\ 14495 \\ 14477 \\ 14444 \\ 14415 \\ 14557 \\ 14571 \\ 14591 \\ 14486 \\ 14447 \\ 14557 \\ 14574 \\ 14477 \\ 14430 \\ 14578 \\ 14899 \\ 14686 \\ 14623 \\ \end{array}$
1413 720 1889	Tazewell Co Logan Co Logan Co	14.35 14.80 11.83	12.45 13.81 12.25	3.53 3.56 3.83	12504 12426 12376	14569 14733 14392
			Y 10 1 1 1	1.2.1.2		

BLUE BAND COAL

Lab. No.	Locality	Total Mois- ture	Referred to Dry Coal			"Unit Coal" Basis B. t. u. – 5000 S
			Ash	Sul.	B. t. u.	$1.00 - (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})$
$\begin{array}{c} 742\\ 1870\\ 1871\\ 996\\ 997\\ 1177\\ 1178\\ 1175\\ 1176\\ 1845\\ 1176\\ 1845\\ 461\\ 419\\ 420\\ 1810\\ 1722\\ 1723\\ 1776\\ 1777\\ 1799\\ 1800\\ 1651\\ 1652\\ 735\\ 736\\ 737\\ 738\\ 1841\\ 1652\\ 735\\ 736\\ 737\\ 738\\ 1841\\ 1866\\ 1842\\ 186\\ 186\\ 186\\ 186\\ 186\\ 186\\ 186\\ 186$	Christian Co. Christian Co. Christian Co. Clinton Co. Clinton Co. Clinton Co. Clinton Co. Clinton Co. Clinton Co. Clinton Co. Edgar Co. Edgar Co. Franklin Co. Jackson Co. Jackson Co. Jefferson Co. Jefferson Co. Macoupin Co. Macoupin Co. Macoupin Co. Macoupin Co. Macoupin Co. Madison Co. Madison Co. Madison Co. Madison Co. Madison Co. Madison Co. Madison Co. Madison Co. Madison Co. Mantgomery Co. Montgomery Co. Perry Co.	$\begin{array}{c} 11.82\\ 15.15\\ 14.88\\ 10.97\\ 13.05\\ 15.19\\ 14.81\\ 11.83\\ 12.86\\ 14.94\\ 14.82\\ 14.40\\ 11.19\\ 10.06\\ 10.13\\ 8.47\\ 9.09\\ 9.11\\ 8.48\\ 7.81\\ 9.09\\ 9.11\\ 8.48\\ 7.81\\ 9.14\\ 7.48\\ 7.85\\ 12.80\\ 12.71\\ 12.17\\ 12.80\\ 12.71\\ 12.17\\ 12.80\\ 12.89\\ 13.93\\ 11.68\\ 10.33\\ 14.16\\ 11.20\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 12.84\\ 14.76\\ 13.61\\ 11.03\\ 10.37\\ 9.87\\ 11.11\\ 1$	$\begin{array}{c} 13.50\\ 9.97\\ 10.67\\ 10.47\\ 13.98\\ 11.15\\ 16.56\\ 10.78\\ 13.59\\ 11.00\\ 11.42\\ 8.08\\ 10.11\\ 7.53\\ 10.29\\ 10.55\\ 8.78\\ 6.42\\ 7.32\\ 13.20\\ 10.22\\ 11.35\\ 12.10\\ 10.86\\ 11.40\\ 12.87\\ 11.90\\ 12.68\\ 12.29\\ 11.22\\ 10.59\\ 11.62\\ 12.29\\ 11.68\\ 12.68\\ 11.72\\ 14.96\\ 8.50\\ 10.58\\ 9.98\\ 11.51\\ 14.71\\ 12.63\\ 13.92\\ 13.86\\ 15.89\\ \end{array}$	$\begin{array}{c} 4.71\\ 3.70\\ 4.04\\ 4.80\\ 5.29\\ 1.65\\ 2.99\\ 1.65\\ 2.99\\ 4.52\\ 3.02\\ 3.34\\ 4.52\\ 3.02\\ 3.34\\ 1.19\\ .60\\ .91\\ .78\\ 2.13\\ 1.21\\ 1.33\\ 3.85\\ 3.34\\ 4.19\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.419\\ 5.38\\ 4.33\\ 6.49\\ 5.28\\ 4.33\\ 6.49\\ 5.28\\ 4.33\\ 6.49\\ 5.28\\ 4.34\\ 4.30\\ 4.60\\ 4.90\\ 4.90\\ 4.90\\ 4.90\\ 4.90\\ 4.30\\$	12203 12745 12696 12815 12232 12569 12815 12232 12569 12246 12890 12246 12890 12797 13400 12985 13312 12945 13173 13620 12945 13173 13620 12945 13173 13620 12945 12778 13173 13620 12824 12611 12824 12611 12762 12861 12772 12681 12745 12743 127261 1284 1284 12859	$\begin{array}{c} 14448\\ 14405\\ 14448\\ 14405\\ 14484\\ 14614\\ 14596\\ 14342\\ 14262\\ 14459\\ 14512\\ 14734\\ 14715\\ 14722\\ 14597\\ 14519\\ 14597\\ 14597\\ 14595\\ 14679\\ 14734\\ 14897\\ 14603\\ 14735\\ 14655\\ 14603\\ 14735\\ 14655\\ 14603\\ 14735\\ 14655\\ 14301\\ 14238\\ 14477\\ 14419\\ 14369\\ 14441\\ 14692\\ 14457\\ 14435\\ 14720\\ 14990\\ 14534\\ 14398\\ 14522\\ 14517\\ 14456\\ 14607\\ 14534\\ 14471\\ 8\end{array}$
1592 1835 1610	Perry Co Perry Co Randolph Co	$10.49 \\ 10.55 \\ 10.72$	$ \begin{array}{c c} 12.17\\ 12.12\\ 14.55 \end{array} $	3.84 4.50 5.07	12361 12393 11978	14359 14412 14385

 $\mathbf{46}$

PARR-WHEELER-UNIT COAL AND COAL ASH

TABLE 19

"Unit Coal" REFERRED TO Basis Total DRY COAL Lab. LOCALITY Mois-No. B. t. u. - 5000 S ture 1.00 B. t. u. $(1.08 \text{ Ash} + \frac{22}{40} \text{ S.})$ Ash Sul. 9.93 1616 Randolph Co..... 13.41 5.36 12245 14505 5.98 1120 Saline Čo..... 13.793.73 12505 14830 4.55 722 Sangamon Co.... 14.96 11.04 12640 14503 1763 Sangamon Co..... 14.69 10.98 4.95 12503 14349 739 Sangamon Co..... 13.14 12.23 5.03 12372 14425 723 St. Člair Co..... 12.11 12.23 4.37 12604 14676 3.33 724 St. Clair Co..... 12.23 9,69 12982 14612 991 St. Clair Co.... 9.76 15.80 4.76 12202 14895 St. Clair Co..... 995 10.05 12.47 12587 4.19 14694 St. Clair Co..... 9.44 993 11.23 4.37 12723 14630 St. Clair Co..... 13.75 12.53 1001 2.13 12486 14512 13.43 1002 St. Clair Co..... 13.15 3.23 12290 14486 1003 St. Clair Co..... 9.41 12.94 4.90 12701 14948 St. Clair Co..... 15.91 1129 11.07 4.70 12706 14593 1130 St. Clair Co..... 11.11 12.00 4.72 12587 14625 St. Clair Co..... 1174 15.46 12.73 4.02 12428 14549 St. Clair Co..... 1600 11.43 15.14 5.69 11908 14435 12.56 557 Vermilion Co..... 9.15 1.41 13058 14537 558 Vermilion Co..... 12.96 8.03 1.78 13304 14626 1540 Vermilion Co..... 17.73 11.95 1.15 12561 14463 Vermilion Co..... 13.23 1843 11.43 3.17 12842 14761 9.76 3.52 Vermilion Co..... 1844 13.41 13083 14748 11.34 1643 Washington Co..... 4.35 10.4112468 14351 1121 11.50 12744-White Co..... 6.71 4.4614708 459 Williamson Co..... 9.99 8.48 1.03 13323 14701 Williamson Co..... 9.50 $\begin{array}{c} 1.12\\ 2.50 \end{array}$ 460 10.13 13078 14724 Williamson Co..... 1088 6.69 10.65 13016 14795 Williamson Co..... 462 9.39 7.66 1.89 13475 14754 Williamson Co..... 9.73 13.76 1611 10.15 1.06 13229 14763 Williamson Co..... 1612 6.12 12461 14799 4.42Williamson Co..... 1567 6.80 11.84 2.96 12788 14770 1613 Williamson Co..... 9.69 10.23 13077 14742 1.16 9.75 Williamson Co..... 1801 8.13 1.71 13438 14791 7.589.79 1805 Williamson Co..... 12.10 3.85 12698 14745 1806 Williamson Co..... 9.85 2.19 13048 14676 1804 Williamson Co..... 6.77 13.29 5.08 12517 14800 1917 9.65 1.15 13103 Williamson Co..... 8.86 14685 1918 Williamson Co..... 9.34 9.50 1.74 13172 14739

BLUE BAND COAL-(Concluded)

APPENDIX A

UNIT COAL VALUES

Compiled from Bulletin 9, Fourth Series, 1908, Ohio State Geological Survey

No.	County	А	nalyses as Re	''Unit C Basi					
		Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{B. t. u}{1.00 -}$ (1.08 Ash +			
Clarion or No. 4 Coal									

65	Lawrence	6.34	17.41	5.29	10741	14562
67	Lawrence	5.86	15.28	5.36	11133	14547
68	Lawrence	6.11	9.94	3.61	11957	14508
66	Lawrence	6.00	11.86	5.10	11734	14645
64	Scioto	6.80	9.34	3.45	11763	14272
63	Jackson	4.90	13.70	6.14	11495	14545
62	Jackson		13.54	6.08	11381	14436
55	Jackson	5.61	8.09	3.70	12279	14465
56	Jackson	4.98	9.80	4.08	12154	14538
57	Jackson	4.71	8.61	3.73	12361	14505
60	Jackson	5.33	8.40	3.72	12206	14387
59	Vinton	4.72	11.21	4.16	12049	14640
61	Vinton	4.52	8.85	4.23	12337	14505
54	Vinton	5.02	8.15	2.81	12469	14639
58	Vinton	4.61	11.10	5.28	12053	14645
70	Vinton	5.02	8.97	3.32	12528	14780
69	Vinton	4.95	9.32	3.53	12445	14775
	Average	5.34	10.80	4.33	11947	14551

Lower Kittaning or No. 5 Coal

74	Lawrence	7.57	8.79	3.20	12199	14830
75	Lawrence	8.07	9.71	2.13	11927	14727
76	Jackson	8.39	7.42	2.65	12190	14679
71	Perry		10.16	4.72	11864	14612
72	Perry	6.74	7.12	2.58	12393	14574
73	Muskingum	5.05	7.77	4.80	12569	14691
776	Jefferson			3.82	13664	15406
77	Tuscarawas			3.25	12902	15061
77a	Mahoning	5.23	4.72	2.17	13504	15141
	Av	6.18	7.87	3.26	12578	14863

MIDDLE KITTANING OR NO. 6 COAL

82a	Lawrence Lawrence Gallia. Athens. Athens. Athens.	6.64 8.08 6.36 6.17	10.92 8.52 8.49 7.82	$\begin{array}{r} 3.32 \\ 3.64 \\ 0.51 \\ 0.90 \end{array}$	11927 12091 12454 12362	$14957 \\ 14749 \\ 14753 \\ 14764 \\ 14511 \\ 14563$
84	Athens	6.70	6.75	2.28	12458	14563

PARR-WHEELER-UNIT COAL AND COAL ASH

TABLE 20

UNIT COAL VALUES—(Continued)

No.	County	A	nalyses as Re	of Co ceived		''Unit Coal'' Basis	
110.	COUNTI					B. t. u 5000 S	
		Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{1.00 - (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})}{(1.08 \text{ Ash} + \frac{22}{40} \text{ S.})}$	
85 82 81 89 90 86 87 88 80 79 91 78 92 93 95 94 97 93 95 94 97 93 01 100 96 99 104 102 103	Athens. Vinton. Hocking. Athens. Athens. Athens. Hocking. Hocking. Hocking. Hocking. Perry. Muskingum. Muskingum. Muskingum. Muskingum. Muskingum. Muskingum. Muskingum. Muskingum. Muskingum. Muskingum.	ture 6.80 4.90 6.52 7.14 7.55 7.45 7.40 6.55 7.45 7.40 6.55 7.76 5.79 7.00 5.25 5.90 6.72 7.21 5.70 6.40 8.467 5.02 5.44 5.55 4.62	Ash 8.05 10.15 8.03 6.72 6.73 5.85 4.81 5.00 6.97 7.47 5.91 6.95 9.86 10.10 6.64 5.26 8.45 7.58 9.77 9.83 9.56 9.28 5.23 9.28 6.58	phur 2 .14 4 .25 3 .52 1 .65 0 .86 0 .77 0 .66 1 .06 2 .57 1 .00 2 .33 3 .43 4 .90 2 .34 3 .38 2 .72 5 .54 4 .10 5 .97 3 .63 5 .35 4 .49	$\begin{array}{c} \text{B. t. u.} \\ \hline \\ 12229 \\ 12321 \\ 12330 \\ 12353 \\ 12409 \\ 12510 \\ 12703 \\ 12649 \\ 12422 \\ 12190 \\ 12569 \\ 12384 \\ 12191 \\ 12035 \\ 12425 \\ 12614 \\ 12332 \\ 12361 \\ 12244 \\ 12371 \\ 12164 \\ 12280 \\ 12944 \\ 12337 \\ 12827 \end{array}$	$\begin{array}{r} (1.08 \ \mathrm{Ash} + {}^{22}\!/_{40} \ \mathrm{S.}) \\ \hline \\ \hline \\ 14547 \\ 14802 \\ 14666 \\ 14488 \\ 14552 \\ 144563 \\ 14552 \\ 14552 \\ 14563 \\ 14548 \\ 14548 \\ 14548 \\ 14548 \\ 14548 \\ 14569 \\ 14669 \\ 14669 \\ 14716 \\ 14756 \\ 14756 \\ 14756 \\ 14781 \\ 14663 \\ 14703 \\ 14668 \\ 14689 \\ \end{array}$	
111	Coshocton	4.37	5.36	3.61	13045	14643	
112 108	Coshocton		6.64 5.59	$2.03 \\ 4.00$	11039 13084	13871* 14736	
108	Coshocton		7.02	3.87	12719	14708	
105	Coshocton		6.30	4.22	12755	14661	
110	Coshocton		13.28	4.87	11200	14159	
113	Coshocton		4.45	3.54	13232	14702	
$\frac{114}{118}$	Coshocton		8.75	5.36	12380 12290	14589 14546	
120	Coshocton		8.60	4.30	12290	14540	
107	Coshocton		5.08	3.18	12911	14641	
133	Tuscarawas		7.67	5.22	12949	14733	
131	Tuscarawas		9.38	4.88	12548	14686	
115	Tuscarawas		5.47	4.05	12958	14637	
130	Tuscarawas		8.42	3.83	12782	14808	
129	Tuscarawas		6.01	3.24	13151	14774	
124	Tuscarawas		5.21	3.25	13196	14730	
134	Tuscarawas	. 3.18	6.93	4.12	13149	14865	
116	Tuscarawas		5.87	3.55	12820	14613	
128	Tuscarawas	. 4.30	7.63	3.97	12602	14546	

* Low B. t. u. due to weathering.

No.	County	А	NALYSES AS RE	''Unit Coal'' Basis		
		Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 - (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})}$
$117 \\ 106 \\ 121 \\ 122 \\ 123 \\ 132 \\ 138 \\ 127 \\ 119 \\ 125 \\ 126 \\ 135 \\ 137 \\ 139 \\$	Coshocton Coshocton Tuscarawas Tuscarawas Carroll Tuscarawas Tuscarawas Holmes Tuscarawas Tuscarawas Stark Columbiana Stark	5.30 3.52 4.94 3.51 3.76 7.15 4.66 7.31 4.69	$\begin{array}{c} 11.29\\ 6.15\\ 6.01\\ 9.50\\ 7.69\\ 4.56\\ 6.22\\ 4.21\\ 9.06\\ 7.04\\ 8.22\\ 4.60\\ 10.08\\ \end{array}$	$5.60 \\ 3.72 \\ 3.17 \\ 4.19 \\ 4.56 \\ 3.06 \\ 2.62 \\ 3.28 \\ 1.00 \\ 4.70 \\ 2.91 \\ 2.66 \\ 1.76 \\ 4.13 \\ \end{bmatrix}$	$\begin{array}{c} 11869\\ 12751\\ 13135\\ 12341\\ 12875\\ 13028\\ 12949\\ 12775\\ 12514\\ 12386\\ 12748\\ 12559\\ 14020\\ 12362\\ \end{array}$	$14481 \\ 14609 \\ 14705 \\ 14706 \\ 14761 \\ 14760 \\ 14820 \\ 14525 \\ 14230 \\ 14649 \\ 14649 \\ 14676 \\ 14971 \\ 15401 \\ 14973 \\ 14973$
	Av	5.56	7.36	3.30	12564	14644

UNIT COAL VALUES—(Continued)

Upper Freeport, Waterloo or No. 7 Coal

$147 \\ 144 \\ 145 \\ 146 \\ 142 \\ 140 \\ 141$	Lawrence Lawrence Lawrence Gallia. Lawrence Lawrence Lawrence	7.85 8.37 8.45 7.62 7.13 8.77	$12.18 \\ 8.23 \\ 11.28 \\ 12.39 \\ 8.91 \\ 8.71$	$\begin{array}{c} 2.66 \\ 1.29 \\ 0.93 \\ 1.81 \\ 1.31 \\ 0.76 \end{array}$	11801 11349 11873 11529 11468 12089 11855	$14824 \\ 14465 \\ 14396 \\ 14547 \\ 14586 \\ 14570 \\ 14517 \\ 14517 \\ 14557 \\ 14575 \\ 1457$
143	Lawrence	8.38	10.09	1.84	11695	14556
	Av	7.97	10.31	1.62	11707	_14531

UPPER FREEPORT OR NO. 7 COAL

148 149 150 151	Muskingum Muskingum Muskingum Coshocton	4.72 5.11	7.56	5.00 3.84	12683 11804	$14566 \\ 14736 \\ 14667 \\ 14694$
	Av	5.28	7.78	3.80	12542	14665

No.	County		as Re	S OF CO CEIVED	''Unit Coal'' Basis	
	COCATT	Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -}$ (1.08 Ash + $\frac{22}{40}$ S.)
·	Pit	TSBURG	or No.	8 Coai	j <u> </u>]
$\begin{array}{ccccc} 27 & Gall\\ 28 & Gall\\ 26 & Gall\\ 23 & Ath\\ 24 & Ath\\ 24 & Ath\\ 24 & Ath\\ 24 & Ath\\ 22 & Mor\\ 9 & Beln\\ 11 & Beln\\ 3 & Beln\\ 4 & Beln\\ 3 & Beln\\ 4 & Beln\\ 7 & Beln\\ 10 & Beln\\ 6 & Beln\\ 5 & Beln\\ 1 & Beln\\ 2 & Beln\\ $	ia ia ia ia ens ens ens ens ens ens ens ens	5.80 6.98 7.83 6.73 5.78 6.60 4.51 2.79 4.08 2.911 3.511 4.47 3.521 4.47 3.211 4.47 3.754 4.46 3.39 3.79 4.253 4.253 3.103 3.133 4.577 6.548 3.803 3.133 4.576 5.988 3.833 4.899 4.305 5.055	$\begin{array}{c} 10.06\\ 9.03\\ 9.76\\ 13.03\\ 8.00\\ 10.20\\ 11.49\\ 8.19\\ 9.42\\ 10.61\\ 8.00\\ 6.86\\ 8.95\\ 7.26\\ 11.01\\ 10.84\\ 10.76\\ 7.86\\ 9.00\\ 10.35\\ 9.21\\ 9.52\\ 8.22\\ 9.00\\ 6.74\\ 5.97\\ 10.88\\ 10.46\\ 6.45\\ 8.22\\ 7.88\\ 7.95\\ \end{array}$	$\begin{array}{c} 4.34\\ 5.21\\ 3.89\\ 4.19\\ 3.41\\ 4.82\\ 5.09\\ 4.95\\ 4.31\\ 3.72\\ 4.28\\ 4.67\\ 4.28\\ 4.67\\ 4.28\\ 4.67\\ 4.28\\ 4.67\\ 4.28\\ 4.67\\ 4.16\\ 3.95\\ 4.38\\ 4.02\\ 1.55\\ 2.19\\ 1.35\\ 4.38\\ 4.09\\ 1.35\\ 2.83\\ 3.01\\ 2.61\\ \end{array}$	$\begin{array}{c} 11792\\ 11849\\ 11779\\ 11441\\ 12299\\ 11945\\ 12100\\ 12987\\ 12476\\ 13212\\ 13185\\ 12785\\ 13135\\ 12375\\ 12357\\ 12425\\ 12991\\ 12861\\ 12425\\ 12991\\ 12861\\ 12425\\ 12605\\ 12875\\ 13019\\ 12789\\ 12710\\ 12964\\ 12355\\ 12515\\ 13099\\ 12888\\ 12859\\ 12888\\ 12859\\ 12865\\ \end{array}$	$\begin{array}{c} 14301\\ 14413\\ 14475\\ 14614\\ 14618\\ 14560\\ 14553\\ 14504\\ 14134\\ 14961\\ 15099\\ 14937\\ 14933\\ 14920\\ 14976\\ 14794\\ 14977\\ 14850\\ 15027\\ 14840\\ 14842\\ 15008\\ 14943\\ 14943\\ 14980\\ 14842\\ 15008\\ 14943\\ 14980\\ 14853\\ 14798\\ 15095\\ 14938\\ 14928\\ 14928\\ 14958\\ 14995\\ \end{array}$
Av.	••••••••••••••••••••	4.70	9.10	3.81	12559	14835
			or No. 8			
33 Mei 29 Mei 30 Mei 31 Mei	lia gs gs gs gs gs	4.85	11.46 12.52 8.69 9.29 10.58 10.93	2.18 2.94 2.05 1.32 4.17 1.83	11497 11923 12105 12002 11990 11722	14561 14718 14608 14552 14588 14618
Av.		6.79	10.58	2.42	11873	14608

UNIT COAL VALUES—(Concluded)

No.	County	A	NALYSES AS RE			''Unit Coal'' Basis						
		Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 - (1.08 \text{ Ash} + \frac{22}{40} \text{ S}.)}$						
	MEIGS CREEK OR NO. 9 COAL											
53 52	Washington Washington	2.95	12.89	5.55	12245 12749	14946 14970						
44	Noble		12.33	6.00	12357	15011						
45	Noble	2.90	10.16	4.27	12692	14895						
43	Noble		11.41	5.79	12514	14918						
42	Noble		12.85	5.60	12130	14827						
50 48	Morgan	5.13	$11.74 \\ 10.37$	4.89	11925 12114	15270 14621						
48 49	Morgan Morgan	4.07	10.57	4.30	12114	14621 14637						
47	Noble	3.54	13.23	6.21	11956	14787						
46	Noble		9.82	5.59	12301	14757						
37	Belmont		13.07	3.27	12002	14870						
40	Belmont	3.40	14.94	4.39	11840	14890						
41	Belmont		11.84	3.67	12391	14947						
39	Belmont	4.17	9.60	3.11	12602	14863						
38	Belmont	4.31	11.68	1.94	12307	14888						
36a 36	Belmont		$11.24 \\ 12.82$	2.11 2.41	11860 11974	14846						
35	Belmont	4.98	12.82	2.41 2.20	12393	14840						
	Av	4.11	11.60	4.28	12240	14845						

APPENDIX B

UNIT COAL VALUES

Compiled from Bulletins 261, 290, 332, United States Geological Survey

State		County	А	NALYSES AS RE	''Unit Coal'' Basis		
No.			Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -} (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})$

Alabama

1	1078M*	Walker	1.35	13.63	.71	12991	15509
1	1201C *	Walker	2.34	12.54	.72	12856	15313
2	1075M	Walker	2.25	9.04	1.09	13133	14967
2	1076M	Walker	2.42	11.13	1.10	12695	14879
2	3011M	Walker	4.71	10.17	1.33	12596	14992
2	1225C	Walker	3.36	12.43	1.01	12350	14879
2	3211C	Walker	3.95	14.59	1.12	11785	14722
3	3018M	Bibb	3.03	10.72	. 49	13034	15285
3	3255C	Bibb	2.72	14.36	. 55	12461	15263
4	3034M	Bibb	3.67	3.14	1.22	14396	15536
4	3103C	Bibb	6.43	12.92	1.08	12395	15616
5	4091M	Blount	2.93	2.73	.65	14693	15636
5	4252C	Blount	5.59	16.08	1.40	11906	15518
6	4293M	Jefferson	2.81	3.51	. 59	14643	15701
5	4338C	Jefferson	3.23	6.71	.61	14074	15747

Arkansas

1	1045M	Sebastian 1.02	7.49	1.10	14434	1	15927
1	2585M	Sebastian 3.53	7.77	1.29	14017		15971
1	1114C	Sebastian 3.24	12.61	1.24	13129		15846
1	2689C	Sebastian 7.49	17.97	1.06	11369		15604
2	1049M	Sebastian	6.97	2.12	14387		15806
2	1160C	Sebastian 2.23	9.20	1.87	13750		15733
3	1115M	Sebastian 1.60	7.91	1.42	14162		15818
3	1296C	Sebastian 2.19	11.63	1.28	13464	-	15849
5	1130M	Franklin 1.38	6.95	1.52	14330		15790
5	1331C	Franklin 2.36	12.08	1.99	13259		15761
7	2593M	Sebastian 3.97	5.91	1.53	14236		15945
7	2688C	Sebastian 5.47	11.69	2.02	12690		15582
7	2722C	Sebastian 6.89	15.00	2.24	12060		15787
8	2587M	Johnson 3.12	8.46	1.84	13793		15797
8	2744C	Johnson 5.19	14.01	2.05	12460		15731
9	2599M	Sebastian 1.99	7.06	1.05	14087		15628
9	2690C	Sebastian 5.26	24.81	1.00	10451		15434
10	2647M	Ouachita 39.50	12.58	. 53	5877		12551
10	2726C	Ouachita 39.43	9.71	.49	6356		12717
13	3798M	Franklin 2.91	17.51	3.12	12312		15898
13	4626C	Franklin 1.76	14.96	2.29	12926		15853
		-					

* Samples marked M are mine samples: those marked C are car samples of various sizes of coal.

State	Table	County	А	NALYSES AS RE	''Unit Coal'' Basis						
No.	No.		Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -}$ (1.08 Ash + $\frac{22}{40}$ S.)				
	California										
1 1	1607M 1680C	Alameda Alameda	$18.02 \\ 18.51$	$\begin{array}{c} 16.37\\ 15.49\end{array}$	3.07 3.05	8105 8507	12699 13243				
			Сот	ORADO							
1 1	1383M 1523C	Boulder Boulder				10237 10143	13477 13570				
			Fı	ORIDA							
1	3270C	Orange	21.00	5.17	.45	8127	11076				
			Gi	ORGIA							
1 1	4156M 4320C	Chattanooga Chattanooga	2.85 3.80	7.84 14.49	.67 1.27	14198 12791	16039 15939				
			Il	LINOIS							
$\begin{array}{c} 24\\ 24\\ 25\\ 35\\ 23\\ 10\\ 13\\ 13\\ 19\\ 19\\ 19\\ 19\\ 18\\ 18\\ 26\\ 9\\ 9\\ 9\\ 9\\ 9\\ 20\\ 4\\ 4\end{array}$	2854M 2972C 2856M 2991C 4385M 1648C 1694M 1786C 1871M 1926C 2020C 1741M 1779C 3003 1625M 1635C 1639C 4247C 2731C 1341M 1417C	Clinton Clinton Clinton Clinton Franklin Franklin Franklin Franklin Franklin Franklin La Salle La Salle Logan Macoupin Macoupin Macoupin Macoupin Macoupin Macoupin Macoupin Madison	$\begin{array}{c} 11.44\\ 11.64\\ 11.35\\ 15.06\\ 9.50\\ 9.46\\ 8.31\\ 9.90\\ 14.91\\ 10.72\\ 13.87\\ 12.39\\ 15.68\\ 13.29\\ 13.54\\ 13.72\\ 15.25\\ 14.68\\ 15.09\\ \end{array}$	$\begin{array}{c} 9.18\\ 10.71\\ 8.66\\ 13.40\\ 9.65\\ 11.44\\ 8.12\\ 10.48\\ 7.74\\ 8.93\\ 9.36\\ 10.31\\ 8.92\\ 12.09\\ 8.90\\ 10.74\\ 10.32\\ 15.35\\ 13.68\\ 7.42\\ 11.64\\ \end{array}$	$\left \begin{array}{c} 3.35\\ 4.94\\ 3.41\\ 4.76\\ 1.05\\ 1.45\\ 1.63\\ 1.55\\ .45\\ .91\\ 3.44\\ 3.92\\ 3.51\\ 4.12\\ 4.03\\ 3.96\\ 3.81\\ 3.88\\ .83\\ 1.32\\ \end{array}\right.$	10937 10958 11290 10733 10726 11506 11990 11727 12001 10958 11686 10985 11399 10215 11162 10807 10053 11151 10804	$\begin{array}{c} 14395\\ 14422\\ 14416\\ 14666\\ 14435\\ 14783\\ 14745\\ 14651\\ 14699\\ 14545\\ 14800\\ 14790\\ 14784\\ 1482\\ 14641\\ 14599\\ 14627\\ 14528\\ 14409\\ 14533\\ 14552\\ \end{array}$				

State	Table	County	A	ANALYSE AS RE	s of Co CEIVED		"Unit Coal" Basis
No.	No.		Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -} (1.08 \text{ Ash} + \frac{22}{40} \text{ S}.)$
$\begin{array}{c} 5\\7\\7\\7\\21\\22\\22\\22\\23\\23\\23\\29\\29\\29\\29\\29\\29\\29\\29\\29\\29\\29\\29\\29\\$	1556C 1609M 1611C 1780C 2770M 2852C 2772M 2905C 2896C 2774M 2905C 2896C 2774M 2913M 3913M 3913M 3958C 3980C 1725M 1761C 1449M 1661M 1557C 1702C 1627C 1095M 1261C 1152C 3912M 4364C 4251M 4376C 1704M 1740C 2897M 3052C 4414M 4636C 4622C 1170M 1318C 1634M 1654C	Madison. Maton. Maton. Maton. Maton. Montgomery. Montgomery. Montgomery. Montgomery. Montgomery. Montgomery. Montgomery. St. Clair. St. Clair. Sangamon. Sangamon. Sangamon. Sangamon. Saline. Saline. Saline. Williamson. Williamson. Williamson. Williamson.	11.87 11.46 10.83 15.23 15.54 13.51 11.91 13.07 13.47 15.68 14.25 12.69 12.47 13.10 12.25 10.25 9.95 14.89 12.90 14.43 11.93 13.20 11.17 9.75 12.03 9.88 11.69 14.38 13.10 13.89	$\begin{array}{c} 16.79\\ 11.58\\ 17.31\\ 13.18\\ 9.03\\ 10.93\\ 10.15\\ 13.01\\ 14.53\\ 10.06\\ 11.53\\ 15.59\\ 9.44\\ 8.76\\ 12.56\\ 16.00\\ 12.33\\ 13.25\\ 13.23\\ 7.87\\ 11.08\\ 13.28\\ 14.18\\ 12.53\\ 10.32\\ 13.20\\ 22.44\\ 10.81\\ 13.19\\ 8.75\\ 13.25\\ 13.26\\ 11.78\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 8.18\\ 13.77\\ 7.48\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 11.26\\ 12.26\\ 10.66$	3.29 4.75 4.40 4.53 1.59 4.01 5.34 4.359 4.41 3.98 3.72 3.62 4.41 3.98 3.72 4.41 3.98 3.72 4.41 3.98 3.72 4.41 3.98 3.72 4.41 3.98 3.72 4.41 3.98 3.72 4.41 3.98 3.72 4.41 3.98 3.72 4.41 3.98 3.72 4.41 4.42 3.78 4.01 4.42 3.78 4.01 4.42 4.01 4.42 4.01 4.42 4.01 4.42 4.01 4.42 4.01 4.22 4.10 4.03 3.83 3.66 3.83 3.66 3.83 4.13 3.66 3.83 4.14 4.05 1.58 2.36 .999 1.72 2.82 1.97	9319 10768 10026 10816 10901 10507 10881 10615 10192 10949 10510 9655 10892 11236 10667 9983 10719 11077 10960 11016 10856 10064 10064 10303 10514 11223 11025 9149 11439 10636 10757 11007 9940 12686 11572 12418 12386 11776 11999 11957	$\begin{array}{c} 14523\\ 14425\\ 14425\\ 14542\\ 14618\\ 14595\\ 14517\\ 14566\\ 14554\\ 14480\\ 14555\\ 14360\\ 14483\\ 14566\\ 14571\\ 14602\\ 14483\\ 14662\\ 14519\\ 14578\\ 14683\\ 14622\\ 14518\\ 14602\\ 14290\\ 14322\\ 14518\\ 14602\\ 14290\\ 14332\\ 14673\\ 14612\\ 14675\\ 14542\\ 14733\\ 14625\\ 14542\\ 14733\\ 14625\\ 14375\\ 14423\\ 14540\\ 14607\\ 14488\\ 14554\\ 15091\\ 14984\\ 15029\\ 14646\\ 14916\\ 14794\\ 14835\\ \end{array}$
11 11 12 12	1660C 1718C 1683M 1762C	Williamson Williamson Williamson Williamson	8.86 8.61 8.29 8.20	$ \begin{array}{r} 11.66 \\ 7.66 \\ 10.83 \\ 12.95 \end{array} $	2.46 1.65 2.81 3.48	11702 12236 11837 11362	14956 14797 14867 14740

State	Table	County	А	NALYSES AS RE	AL	''Unit Coal'' Basis				
No.	No.	COUNTY	Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -}$ (1.08 Ash + $^{22}/_{40}$ S.)			
12 12 12 16 16 28 28	4201C 3907C 4085C 1731M 1820C 3629M 3789C	Williamson Williamson Williamson Williamson Williamson Williamson	$12.61 \\ 15.31 \\ 9.37 \\ 8.43 \\ 8.72$	9.52 10.50 10.47 7.37 9.60 7.62 9.98	2.342.372.321.251.141.001.32	10784 11066– 10820 12058 11959 12200 11959	14701 14647 14846 14632 14772 14727 14727			
Indiana										
$\begin{array}{c} 20\\ 20\\ 15\\ 15\\ 16\\ 17\\ 10\\ 10\\ 19\\ 7\\ 7\\ 12\\ 12\\ 18\\ 18\\ 1\\ 1\\ 4\\ 4\\ 5\\ 5\\ 6\\ 6\\ 11\\ 11\\ 8\\ 8\\ 9\\ 9\\ 9\\ 9\\ 13\\ 13\\ 14\\ 1\end{array}$	3536M 3979C 3473M 3567C 3564C 3516M 3981C 1853M 1979C 3534M 1882C 2701M 2759C 3525M 3801C 1410M 1507C 1775M 1840C 1775M 1845C 1772M 1859C 1772M 1875C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1828M 2037C 1829M 1859M 1859M 1775M 1859M 1775M 1859M 1775M 1859M 1775M 1859M 1775M 1859M 1775M 1859M 1775M 1859M 1775M 1875M 1977M 1875M 1977M	Clay. Clay. Clay. Greene. Greene. Greene. Knox. Parke. Parke. Parke. Parke. Pike. Pike. Pike. Pike. Pike. Pike. Sullivan. Sul	$\begin{array}{c} 16.91\\ 13.53\\ 13.58\\ 10.30\\ 10.60\\ 12.08\\ 11.54\\ 10.72\\ 13.70\\ 10.18\\ 8.90\\ 11.12\\ 11.29\\ 11.29\\ 11.29\\ 10.57\\ 12.88\\ 11.13\\ 13.25\\ 11.40\\ 12.18\\ 13.25\\ 11.40\\ 12.18\\ 13.99\\ 12.14\\ 12.03\\ 10.45\\ 10.80\\ 14.23\\ 10.45\\ 10.80\\ 14.23\\ 10.45\\ 13.73\\ 13.53\\ 12.92\\ 13.43\\ 12.97\\ 13.62\\ \end{array}$	5.88 17.37 7.55 8.15 11.75 8.30 11.02 9.62 8.57 5.91 9.21 9.35 6.87 11.65 6.14 6.98 9.16 13.40 7.35 14.32 8.96 10.88 9.58 12.62 5.72 8.14 12.24 10.61 8.65 10.76 10.30 7.34 12.09 7.11 14.200 7.11 14.200 14.200 14.200 14.200 14.2000 14.2000 14.2000 14.2000 14.20000 14.20000 14.20000 14.200000 14.2000000000000000000000000000000000000	$\begin{array}{c} 1.95\\ 1.89\\ .95\\ .91\\ 4.23\\ 3.69\\ 3.65\\ 4.41\\ 3.83\\ 2.66\\ 3.74\\ 3.78\\ 3.09\\ 3.87\\ 1.70\\ 2.50\\ 2.26\\ 2.31\\ 1.64\\ 1.87\\ 2.50\\ 2.26\\ 2.31\\ 3.54\\ 4.27\\ 4.04\\ 4.39\\ .89\\ 1.41\\ 4.38\\ 3.72\\ 3.00\\ 3.15\\ 3.27\\ 2.16\\ 3.18\\ 3.28\\ 5.14\end{array}$	$\begin{array}{c} 11680\\ 9524\\ 11738\\ 11419\\ 11218\\ 11752\\ 11011\\ 11655\\ 11767\\ 11930\\ 12181\\ 12008\\ 11549\\ 11921\\ 11266\\ 11801\\ 12031\\ 11324\\ 10318\\ 11516\\ 11192\\ 11745\\ 11185\\ 11722\\ 11745\\ 11185\\ 117261\\ 11761\\ 11261\\ 11759\\ 11360\\ 10948\\ 11119\\ 11448\\ 10899\\ 11543\\ 11146\end{array}$	$\begin{array}{c} 15004\\ 14900\\ 15028\\ 14749\\ 14737\\ 14754\\ 14630\\ 15116\\ 14857\\ 15036\\ 15193\\ 14946\\ 14811\\ 14772\\ 14818\\ 14728\\ 14856\\ 14857\\ 15032\\ 14759\\ 14730\\ 14875\\ 14726\\ 14995\\ 14975\\ 14752\\ 14642\\ 14871\\ 14777\\ 14725\end{array}$			

		UNIT CO	JAL VA			<i>eu</i>)	
State	Table	County	A	AS RE	S OF CC CEIVED	AL	''Unit Coal'' Basis
No.	No.		Mois-		Sul-		B. t. u 5000 S 1.00 -
			ture	Ash	phur	B. t. u.	$(1.08 \text{ Ash} + \frac{22}{40} \text{ S.})$
2 2 3 3	1425M 1495C 1759M 1941C	Warrick Warrick Warrick Warrick	11.28	$9.34 \\13.02 \\7.63 \\15.63$	$\begin{array}{r} 4.44 \\ 4.43 \\ 3.58 \\ 4.79 \end{array}$	11799 11122 11792 10030	$14806 \\ 14754 \\ 14792 \\ 14547$
			1	OWA			
1 2 3 3 4 5 5	1270M 1347C 1289M 1570C 1312M 1434C 1323M 1437C 1332M 1433C	Davis. Davis. Marion. Polk. Polk. Appanoose. Lucas. Lucas.	$\begin{array}{r} 8.24 \\ 15.65 \\ 14.21 \\ 14.42 \\ 13.88 \\ 17.13 \\ 14.08 \\ 18.69 \end{array}$	$ \begin{array}{c} 10.51 \\ 16.00 \\ 11.64 \\ 15.22 \\ 10.99 \\ 14.01 \\ 7.07 \\ 10.96 \\ 7.73 \\ 12.63 \end{array} $	$\begin{array}{r} 4.72 \\ 5.03 \\ 5.10 \\ 4.66 \\ 5.89 \\ 6.15 \\ 4.00 \\ 4.26 \\ 2.39 \\ 3.19 \end{array}$	$\begin{array}{c} 11345\\ 11027\\ 10289\\ 10019\\ 10640\\ 10244\\ 10931\\ 10723\\ 10505\\ 10242\\ \end{array}$	$14871 \\ 15026 \\ 14548 \\ 14652 \\ 14680 \\ 14698 \\ 14694 \\ 14694 \\ 14650 \\ 14496 \\ 14567$
			Indian	TERRITO	ORY		
1 2 3 3 4 4 5 9	1059M 1138C 1071M 1184C 1080M 1274C 1151M 1470C 1481C 4020C	(Town) Henryetta Hartshorne Hartshorne Edwards Edwards Lehigh Lehigh Lehigh Panama	$\begin{array}{c} 7.04 \\ 1.46 \\ 4.45 \\ 2.93 \\ 4.61 \\ 6.50 \\ 6.24 \\ 8.29 \end{array}$	$ \begin{vmatrix} 8.63\\ 10.01\\ 6.40\\ 11.00\\ 10.30\\ 11.14\\ 9.31\\ 13.21\\ 25.05\\ 8.03 \end{vmatrix} $	1.62 1.92 1.38 1.52 3.73 3.63 3.67 3.96 3.95 1.18	12096 12202 14040 12607 12591 12319 11842 11228 9110 13662	$14848 \\ 14929 \\ 15375 \\ 15129 \\ 14786 \\ 14918 \\ 14318 \\ 14267 \\ 14264 \\ 15897$
			K	ANSAS			
1 2 2 3 4 5 5 6 6	1018M 1097C 1017M 1122C 1037M 1086C 1473C 1411M 1567C 2790M 2843C	(County) Crawford Crawford Crawford Cherokee Cherokee Atchison Cherokee Linn Linn	$\begin{array}{c} 4.99\\ 2.44\\ 4.18\\ 2.54\\ 2.50\\ 6.95\\ 5.11\\ 4.10\\ 11.13\end{array}$	$\begin{array}{r} 9.55\\ 12.97\\ 10.60\\ 17.91\\ 9.87\\ 12.45-\\ 12.19\\ 8.90\\ 10.54\\ 12.60\\ 15.72 \end{array}$	3.79 4.28 5.63 6.27 4.47 5.68 8.04 4.34 3.77 2.41 3.72	12947 12242 13043 11642 13340 12900 11905 12926 12926 12895 11219 11142	$\begin{array}{c} 15063\\ 15293\\ 15373\\ 15511\\ 15535\\ 15589\\ 15244\\ 15332\\ 15412\\ 15011\\ 15231\\ \end{array}$

State	Table County No.	County	А	NALYSES AS RE	''Unit Coal'' Basis							
No.		Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -} (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})$						
	Kentucky											
$ \begin{array}{c} 1\\1\\1\\2\\3\\3\\4\\4\\5\\5\\6\\6\\7\\7\\8\\8\\9\\9\\9\\9\end{array} $	1321M 2350M 1474C 2445C 1365M 1461C 1367M 1506C 1382M 1539C 2270M 2528C 2405M 2592C 2453M 2592C 3678M 3860C 3722M 3723M	Bell. Bell. Bell. Hopkins. Hopkins. Hopkins. Hopkins. Webster. Harlan. Harlan. Johnson. Johnson. Johnson. Muhlenberg. Union. Union. Ohio. Ohio. Ohio.	9.89	3.53 3.18 4.39 8.22 7.10 9.13 9.30 10.06 7.40 14.18 2.28 3.70 2.03 2.76 9.42 9.48 4.60 7.92 7.67 8.69 8.96	$\begin{array}{c} .89\\ 1.53\\ 1.22\\ 1.12\\ 3.53\\ 3.62\\ 4.03\\ 3.52\\ 3.33\\ 4.54\\ .48\\ .67\\ .48\\ .67\\ .48\\ .67\\ .48\\ .57\\ 4.07\\ 1.18\\ 2.56\\ .97\\ 1.18\\ 2.56\\ 3.14\end{array}$	$\begin{array}{c} 14322\\ 14375\\ 14148\\ 13214\\ 12344\\ 12200\\ 11965\\ 12022\\ 12861\\ 11950\\ 14121\\ 13923\\ 13687\\ 13743\\ 11965\\ 11986\\ 13489\\ 13239\\ 12076\\ 11927\\ 12078\\ \end{array}$	15280 15491 15397 15427 14858 14979 14748 14944 14836 15240 15165 15217 15054 14975 14919 14886 15443 15443 15444 14758 14872 14922					
			MAI	RYLAND								
1 1	2018M 2274C	Garrett		9.55 13.13	$\begin{array}{c}1.23\\1.49\end{array}$	13853 13255	15936 15942					
			MI	SSOURI								
1 1 2 2 3 4 4 5 5 6 6 7 7 7 7 10 10	1043M 1126C 1226M 1348C 1549C 1446M 1516C 2795M 2865C 2817M 2904C 2823M 2936C 2937C 4197M 4257C	Bates Bates Macon Putnam Morgan Morgan Randolph Randolph Randolph Randolph Adair Adair Adair Adair Macon Macon	$\begin{array}{c} 8.33\\ 14.74\\ 11.50\\ 15.71\\ 13.34\\ 12.67\\ 13.38\\ 12.92\\ 14.01\\ 13.80\\ 17.19\\ 16.36\\ 17.30\\ 16.39\\ 15.41\\ \end{array}$	$\begin{array}{c} 14.52\\ 19.36\\ 7.78\\ 16.86\\ 20.78\\ 6.91\\ 4.83\\ 10.02\\ 13.62\\ 10.29\\ 11.74\\ 9.28\\ 19.51\\ 23.38\\ 20.18\\ 11.61\\ 20.50\\ \end{array}$	$\begin{array}{c} 5.34\\ 5.25\\ 3.79\\ 5.16\\ 3.69\\ 5.06\\ 5.12\\ 4.48\\ 5.03\\ 5.23\\ 5.60\\ 2.76\\ 3.53\\ 2.94\\ 3.12\\ 3.78\\ 3.69\\ \end{array}$	11992 10586 11185 10179 8840 11605 12487 11084 10548 11030 10796 10598 9007 8240 8946 10582 9099	$15334 \\ 15209 \\ 14705 \\ 14709 \\ 14471 \\ 14855 \\ 15426 \\ 14808 \\ 14793 \\ 14955 \\ 14929 \\ 14677 \\ 14566 \\ 14496 \\ 14626 \\ 14496 \\ 14623 \\ 14712 \\ 14712 \\ 14512 \\ 14712 \\ 14512 \\ 15512 \\ 14512 \\ 15512 \\ 14512 \\ 15512 \\ 14512 \\ 14512 \\ 14512 \\ 14512 \\ 14512 \\ 14512 \\ 1451$					

State	Table	No.	A	ANALYSE: AS REG		DAL	''Unit Coal'' Basis				
No.			Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -}$ (1.08 Ash + ²² / ₄₀ S.)				
Montana											
1 2 3	1298C 4234C 4271C	Carbon Carbon Carbon	8.51	10.97 15.39 13.39	$1.73 \\ .60 \\ .54$	10539 10478 10685	13727 14017 13899				
New Mexico											
1 2 2 3 3 3 3 4 4 4 5 5	(1025)M (1026)M 1278C 1028M 1307C 3221M 3295C 3307C 3308C 3228M 3331C 3228M 3331C 3226M 3294C		12.299.6810.792.503.454.362.752.192.783.382.25	$\begin{array}{r} 4.01\\ 6.99\\ 8.08\\ 18.66\\ 9.13\\ 16.67\\ 15.92\\ 15.52\\ 11.11\\ 14.57\\ 13.54\\ 12.37\\ 14.57\end{array}$	$ \begin{array}{r} .52\\.63\\1.55\\1.26\\.72\\.73\\.83\\.64\\.57\\.61\\.61\\.75\\.69\end{array} $	$\begin{array}{c} 11885\\ 11252\\ 11623\\ 9907\\ 13127\\ 11893\\ 11912\\ 12166\\ 13063\\ 12294\\ 12445\\ 13030\\ 12539 \end{array}$	$14048 \\ 14058 \\ 14301 \\ 14398 \\ 15006 \\ 15173 \\ 15220 \\ 15141 \\ 15246 \\ 15113 \\ 15202 \\ 15472 \\ 15472 \\ 15408 \\ 15408 \\ 15000 \\ 1500$				
			North	ι Δακοτ	A						
1 1 2 2 2 3 3	1971M 1279C 2289C 1730M 1416C 2365C 1935M 2243C	Stark. Stark. Stark. Williams. Williams. Milliams. McLean. McLean.	35.38 32.64 41.13 36.78 36.13 40.53	$\begin{array}{c} 7.66\\ 9.35\\ 11.42\\ 5.36\\ 5.09\\ 5.04\\ 5.05\\ 7.75\end{array}$	$ \begin{array}{r} 1.13\\ 1.55\\ 3.54\\ .72\\ .48\\ .59\\ .76\\ 1.15 \end{array} $	6158 6923 6970 6485 7204 7326 6644 7069	$12441 \\ 12756 \\ 12798 \\ 12242 \\ 12496 \\ 12558 \\ 12325 \\ 12740$				
			(Оню							
6 6 11 11 12 12 7 7	2095M 2392C 3986M 4157C 4151C 4178C 2090M 2656C	Belmont Belmont Belmont Belmont Belmont Guernsey Guernsey	$\begin{array}{c} 3.99 \\ 5.31 \\ 4.13 \\ 3.44 \\ 4.14 \\ 2.97 \\ 6.28 \\ 6.65 \end{array}$	8.07 8.52 7.96 12.94 9.38 9.97 7.30 10.55	3.493.334.124.323.963.653.553.13	13102 12843 13088 12287 12874 12933 12701 12179	$15144 \\ 15153 \\ 15155 \\ 15049 \\ 15172 \\ 15133 \\ 14930 \\ 14984$				

State	Table	County	l I	Analyses as Re	S OF CO CEIVED	''Unit Coal'' Basis					
No.	No.	No.	Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -} (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})$				
1 1 2 2 4 4 5 5 3 3 8 8 10 10 9 9 9	1896M 2071C 1898M 2109C 1910M 2083C 1944M 2062C 1900M 2144C 2119M 2559C 3969M 4059C 2208M 2310C 2311C	Jackson Jackson Jackson Jackson Jefferson Jefferson Jefferson Jefferson Perry Perry Perry Perry Tuscarawas Tuscarawas Vinton Vinton	$\begin{array}{c} 7.71\\ 9.38\\ 9.01\\ 4.06\\ 3.53\\ 4.69\\ 4.34\\ 10.78\\ 9.90\\ 8.92\\ 7.55\\ 4.46\\ 4.49\\ 6.79\\ 5.59\end{array}$	$\begin{array}{c} 6.73\\ 11.95\\ 7.62\\ 11.34\\ 7.75\\ 9.12\\ 6.01\\ 7.30\\ 6.13\\ 11.58\\ 5.85\\ 8.37\\ 8.54\\ 7.53\\ 7.66\\ 8.29\\ 11.93\\ \end{array}$	$\begin{array}{c} 3.10\\ 4.61\\ 4.02\\ 3.67\\ 3.47\\ 1.54\\ 1.72\\ 1.11\\ 1.81\\ 3.00\\ 2.84\\ 3.73\\ 2.93\\ 3.34\\ 3.15\\ 3.35\\ \end{array}$	$\begin{array}{c} 12249\\ 11515\\ 11898\\ 11495\\ 13147\\ 13072\\ 13325\\ 13178\\ 11993\\ 11277\\ 12328\\ 12128\\ 12288\\ 12845\\ 12958\\ 12514\\ 12773\\ 11563\\ \end{array}$	$\begin{array}{c} 14647\\ 14685\\ 14590\\ 14758\\ 15152\\ 15226\\ 15060\\ 15078\\ 14563\\ 14665\\ 14653\\ 14644\\ 15022\\ 14938\\ 14858\\ 15068\\ 14766\\ \end{array}$				
	Pennsylvania										
$\begin{array}{c} 10\\ 10\\ 13\\ 8\\ 8\\ 16\\ 16\\ 18\\ 18\\ 21\\ 15\\ 15\\ 15\\ 15\\ 15\\ 17\\ 17\\ 9\\ 9\\ 5\\ 5\\ 11\\ 11\\ 12\\ 12\\ \end{array}$	2080M 2229C 3437M 3879C 2014M 2152C 4029M 4169C 4348M 4509C 4412M 4609C 4412M 4609C 4027M 4082C 4104C 4337 4421 2016M 2199C 1966M 2068C 3421M 3532C 3441M 4098C	Allegheny Allegheny Allegheny Cambria Cambria Cambria Cambria Cambria Cambria Cambria Cambria Fayette Fayette Fayette Indiana Indiana Indiana Indiana Somerset Somerset Washington Washington Washington Washington Washington Washington	3.67 2.61 2.53 2.65 3.49 3.51 2.74 4.25 2.66 4.46 2.82 5.13 2.84 3.13 2.57 2.22 4.35 2.63 3.09 3.01 2.63 3.09 3.01 2.60 1.95 2.60 1.96	5.46 6.17 8.98 13.16 5.71 6.63 7.23 7.87 8.56 8.47 7.37 8.71 8.27 9.81 10.33 8.42 11.90 10.21 11.33 4.83 6.05 5.34 7.29 5.63 9.25	$\begin{array}{c} 1.37\\ 1.26\\ 2.21\\ 2.16\\ .95\\ .94\\ 1.51\\ 1.59\\ 2.97\\ 1.49\\ 1.22\\ .86\\ 3.11\\ 3.77\\ 3.97\\ 1.54\\ 1.51\\ 2.05\\ 2.04\\ .73\\ .88\\ 1.14\\ 1.18\\ 1.19\\ 2.19\\ \end{array}$	$\begin{array}{c} 13874\\ 13997\\ 13356\\ 12816\\ 14515\\ 14279\\ 14144\\ 13513\\ 13995\\ 13682\\ 13991\\ 13365\\ 14079\\ 13795\\ 13712\\ 13801\\ 12964\\ 13705\\ 13424\\ 14197\\ 14013\\ 14146\\ 13775\\ 14184\\ 13622 \end{array}$	$\begin{array}{c} 15395\\ 15475\\ 15303\\ 15507\\ 16108\\ 16025\\ 15876\\ 15553\\ 16014\\ 15903\\ 15731\\ 15675\\ 16094\\ 16159\\ 16072\\ 15624\\ 15725\\ 15963\\ 15945\\ 15430\\ 15430\\ 15465\\ 15320\\ 15689\\ 15560\\ \end{array}$				

State	Table	County	А	AS RE	s of Co ceived		''Unit Coal'' Basis		
No.	No.	No.	Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -}$ (1.08 Ash + $^{22}/_{40}$ S.)		
4 6 7 7 19 19 20 20 22	1942M 2187C 1968M 2161C 1994M 2154C 4352M 4489C 4350M 4517C 4498C	Westmoreland Westmoreland Westmoreland Westmoreland Westmoreland Westmoreland Westmoreland Westmoreland Westmoreland Westmoreland	$\begin{array}{c} 2.73 \\ 3.15 \\ 4.08 \\ 3.24 \\ 3.30 \\ 4.09 \\ 2.01 \\ 3.39 \\ 2.48 \\ 4.00 \\ 3.98 \end{array}$	$\begin{array}{c} 9.13\\ 10.41\\ 9.50\\ 12.52\\ 11.18\\ 12.47\\ 6.32\\ 8.36\\ 9.24\\ 10.54\\ 10.16\end{array}$	1.33 1.26 1.64 1.94 1.79 2.08 1.39 1.05 3.03 2.85 1.00	$\begin{array}{c} 13613\\ 13406\\ 13268\\ 12879\\ 13378\\ 13153\\ 14152\\ 13699\\ 13822\\ 13347\\ 13311 \end{array}$	$15629 \\ 15714 \\ 15557 \\ 15555 \\ 15887 \\ 16050 \\ 15579 \\ 15685 \\ 15936 \\ 15899 \\ 15693$		
Tennessee									
1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 8 9 9 9 9 10 11	2907M 3016C 2931M 3129C 2929M 3040C 2956M 3058C 2958M 3050C 2977M 3102C 2977M 3102C 2977M 3102C 2979M 3127C 3128C 2995M 3113C 3114C 3115C 3009M 3471C	Claiborne. Claiborne. Campbell. Campbell. Campbell. Campbell. Campbell. Roane. Roane. Morgan. Morgan. Cumberland. Cumberland. Fentress. Fentress. White. White. White. White. Grundy. Grundy. Grundy. Grundy. Grundy. Marion. Cumberland.	$\begin{array}{c} 4.81\\ 3.61\\ 5.09\\ 4.25\\ 5.38\\ 3.25\\ 6.39\\ 2.25\\ 5.580\\ 3.80\\ 3.46\\ 3.03\\ 3.03\\ 3.01\\ 2.63\\ 3.12\\ 3.44\\ 3.92\\ 5.68\\ 4.68\\ 3.31\\ \end{array}$	$\begin{array}{c} 4.74\\ 11.15\\ 3.41\\ 6.81\\ 4.13\\ 7.05\\ 6.61\\ 9.53\\ 6.91\\ 9.76\\ 4.50\\ 14.43\\ 9.08\\ 12.85\\ 10.76\\ 13.42\\ 14.12\\ 9.21\\ 14.09\\ 18.55\\ 9.26\\ 13.11\\ 27.87\end{array}$	$\left \begin{array}{c} 1.28\\ 1.58\\ .83\\ .98\\ .93\\ .98\\ .98\\ 2.96\\ 3.23\\ .78\\ .78\\ 2.42\\ 3.26\\ 3.42\\ 4.38\\ 4.74\\ .73\\ .94\\ .74\\ .65\\ 1.30\\ .90\\ \end{array}\right $	$\begin{array}{c} 13804\\ 12569\\ 14130\\ 13295\\ 13666\\ 13048\\ 13514\\ 12578\\ 13851\\ 12841\\ 14182\\ 12514\\ 12983\\ 12602\\ 13104\\ 12715\\ 12517\\ 13219\\ 12508\\ 11480\\ 13163\\ 12193\\ 10264 \end{array}$	$15195 \\ 15180 \\ 15271 \\ 15222 \\ 15004 \\ 15033 \\ 15112 \\ 15135 \\ 15456 \\ 15445 \\ 15557 \\ 15574 \\ 15073 \\ 15300 \\ 15490 \\ 15529 \\ 15540 \\ 15292 \\ 15510 \\ 15489 \\ 15454 \\ 15825 \\ 15514 \\ 15514 \\ 15514 \\ 15514 \\ 1512 \\ 1511 \\ 15$		
			Т	EXAS					
1 1 2 2	1196M 1456C 1241M 1597C	Houston Houston Wood Wood	34.70	10.75 11.20 7.92 7.28	. 56 . 79 . 50 . 53	7142 7056 7996 7348	13034 13298 12794 12594		

State	Table	County	A	NALYSES		AL	"Unit Coal" Basis			
No.	No.		Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -} (1.08 \text{ Ash} + \frac{22}{40} \text{ S.})$			
3 3 4 4	2652M 2734C 2635M 2717C	Milan Milan Wood Wood	31.06 36.80	7.38 7.88 6.25 7.30	.77 .99 .53 .51	7132 7870 7101 7497	$ \begin{array}{r} 12759 \\ 13059 \\ 12598 \\ 12885 \end{array} $			
			τ	Јтан						
1 2	3199C 3200M	Carbon Summitt	$\begin{array}{c} 6.05\\ 14.07\end{array}$	4.87 6.26	.55 1.28	13151 10471	14848 13262			
	Virginia									
1 1 2 3 4 4 5 5 5 6 6	2268M 2420C 2476C 2382C 2323M 2358C 4093M 4287C 4294C 4305M 4573C	Lee. Lee. Wise. Lee. Lee. Montgomery. Montgomery. Tazewell. Tazewell.	4.80 7.52 2.60	$\begin{array}{c} 8.11\\ 4.73\\ 5.58\\ 4.48\\ 3.06\\ 4.33\\ 21.94\\ 18.03\\ 16.23\\ 4.48\\ 9.79 \end{array}$	$\begin{array}{c} 2.31 \\ 1.20 \\ .92 \\ .67 \\ .34 \\ .79 \\ .68 \\ .63 \\ .65 \\ 1.35 \\ 1.21 \end{array}$	$\begin{array}{c} 13117\\ 13826\\ 13932\\ 14470\\ 14144\\ 13939\\ 11669\\ 11961\\ 11893\\ 14636\\ 13264 \end{array}$	15428 15267 15410 15736 15253 15353 15353 15949 15825 15900 15867 15880			
			Was	HINGTON	I					
1 1 1 2 2	2456M 2687C 2686C 2458M 3098C	King King Kittitas Kittitas.	16.04 14.30 3.39	7.78 11.53 11.37 10.39 12.26	.43 .61 .72 .33 .38	10006 9938 10208 12847 12586	13604 13920 13930 15059 15070			
	West Virginia									
6 6 7 7 8 8 9 9	1176M 1390C 1198M 1595C 1257M 1515C 1208M 1561C	Fayette Fayette Fayette Fayette Fayette Fayette Fayette	1.53 2.12 3.94 1.90 4.16 1.98	$\begin{array}{c} 3.55 \\ 5.05 \\ 3.55 \\ 4.93 \\ 4.87 \\ 7.17 \\ 3.76 \\ 6.58 \end{array}$.75 .65 .90 1.16 .64 .90 .85 .77	14900 14807 14915 14382 14452 13786 14738 13925	15870 15944 15895 15898 15591 15686 15825 15712			

State	Table	A	ANALYSES	"Unit Coal" Basis			
No.	No.	(c	Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 - (1.08 \text{ Ash} + \frac{22}{40} \text{ S}.)}$
$\begin{array}{c} 13\\ 13\\ 14\\ 14\\ 19\\ 2\\ 2\\ 15\\ 15\\ 20\\ 20\\ 21\\ 21\\ 22\\ 22\\ 23\\ 23\\ 25\\ 25\\ 11\\ 11\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$	1867 M 2028C 1870M 2004C 2359M 2549C 1103M 1308C 2039M 2195C 2375M 2556C 2377M 2556C 2377M 2556C 3456M 3457M 3905C 3456M 3457M 3905C 3458M 3905C 3458M 3905C 3458M 1252C 1234M 1242M 1264C 1238M 1213C 2041M 2264C 1234M 1252C 1108M 1252C 1108M 1252C 1108M 1252C 1108M 1252C 1116M	FayetteFayetteFayetteFayetteFayetteFayetteFayetteFayetteHarrisonHarrisonHarrisonHarrisonHarrisonHarrisonKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaKanawhaMcDowellMcDowellMcDowellMarionMarionMarionMarionMingoMingoMonongaliaMonongaliaPrestonPrestonPrestonPrestonPrestonPrestonPrestonPrestonPrestonPrestonPrestonPrestonPrestonPrestonPreston	5.48 3.74 2.96 5.09 3.26	$\begin{array}{c} 2.29\\ 3.91\\ 7.44\\ 3.27\\ 2.46\\ 5.01\\ 9.08\\ 7.86\\ 5.55\\ 8.55\\ 8.55\\ 8.55\\ 4.44\\ 8.03\\ 3.62\\ 4.85\\ 5.49\\ 6.44\\ 7.82\\ 3.54\\ 8.10\\ 7.58\\ 7.68\\ 7.22\\ 5.25\\ 11.12\\ 4.39\\ 3.90\\ 6.87\\ 7.68\\ 7.22\\ 5.25\\ 11.12\\ 4.39\\ 3.90\\ 6.87\\ 7.68\\ 7.22\\ 5.25\\ 11.12\\ 4.39\\ 3.90\\ 6.87\\ 7.68\\ 7.22\\ 5.25\\ 11.2\\ 4.39\\ 3.90\\ 6.87\\ 7.68\\ 7.22\\ 5.25\\ 11.2\\ 4.39\\ 3.90\\ 6.87\\ 7.68\\ 7.22\\ 4.58\\ 6.50\\ 5.83\\ 8.19\\ 10.23\\ 7.74\\ 6.21\\ 8.39\\ 10.23\\ 7.74\\ 6.21\\ 8.39\\ 10.33$	$\begin{array}{c} .79\\ .89\\ 1.04\\ 1.03\\ .78\\ .89\\ 4.20\\ 3.48\\ 2.40\\ 2.54\\ 1.14\\ 1.32\\ .63\\ .83\\ .59\\ 1.35\\ 1.22\\ .64\\ .64\\ .44\\ .51\\ .52\\ .64\\ .64\\ .44\\ .51\\ .52\\ .63\\ .68\\ 1.59\\ 1.20\\ .69\\ 1.20\\ .48\\ .56\\ .66\\ .67\\ .75\\ .85\\ .85\\ .90\\ 1.07\\ 1.73\\ \end{array}$	$\begin{array}{c} 14454\\ 14454\\ 14436\\ 13972\\ 14110\\ 14773\\ 14425\\ 13466\\ 13790\\ 14105\\ 13811\\ 14368\\ 13766\\ 14173\\ 13948\\ 13813\\ 13813\\ 13486\\ 13963\\ 13707\\ 13523\\ 13471\\ 13379\\ 14792\\ 13509\\ 14926\\ 14731\\ 14571\\ 14063\\ 14107\\ 14540\\ 13093\\ 14924\\ 15023\\ 13957\\ 14106\\ 13941\\ 13558\\ 13999\\ 14218\\ 14069\\ 13370\\ 13995\\ \end{array}$	$\begin{array}{c} 15734\\ 15721\\ 15721\\ 15741\\ 15480\\ 15733\\ 15780\\ 15432\\ 15536\\ 15558\\ 15664\\ 15571\\ 15609\\ 15362\\ 15346\\ 15149\\ 15346\\ 15149\\ 15346\\ 15149\\ 15346\\ 15149\\ 15346\\ 15149\\ 15346\\ 15149\\ 15335\\ 15027\\ 15420\\ 15317\\ 15199\\ 15229\\ 16075\\ 16122\\ 16013\\ 15989\\ 16065\\ 15447\\ 15450\\ 16020\\ 15701\\ 16039\\ 16125\\ 15447\\ 15450\\ 16020\\ 15701\\ 16039\\ 16125\\ 15504\\ 15554\\ 15829\\ 15689\\ 15697\\ 15882\\ 15764\\ 15744\\ 15822 \end{array}$
17 17 5 5	2332C 1144M 1297C	Preston Preston Randolph Randolph	3.22 3.46 2.82 1.45	8.12 10.45 10.10	1.73 1.45 1.00 .98	13995 13869 13475 13718	15822 15861 15731 15693

UNIT COAL VALUES—(Concluded)

State	Table	County	A	AS RE	''Unit Coal'' Basis					
No.	No.		Mois- ture	Ash	Sul- phur	B. t. u.	$\frac{\text{B. t. u.} - 5000 \text{ S}}{1.00 -} (1.08 \text{ Ash} + \frac{22}{40} \text{ S}.)$			
Wyoming										
1 2 3 4 5 6	1368M 1479C 1376M 1571C 1976M 2278C 3160M 3363C 3396C 3164M 3213C 3202M 3390C	Sheridan Sheridan Weston Weston Crook Carbon Carbon Carbon Sweetwater Sweetwater Uinta Uinta	$\begin{array}{c} 22.63\\ 8.60\\ 9.44\\ 8.93\\ 17.74\\ 15.12\\ 12.32\\ 11.30\\ 12.40\\ 12.41\\ 11.64\\ 20.57 \end{array}$	$\begin{array}{c} 3.37\\ 4.50\\ 21.90\\ 20.72\\ 20.79\\ 11.55\\ 16.70\\ 5.19\\ 7.31\\ 6.77\\ 2.52\\ 3.41\\ 2.63\\ 3.12 \end{array}$	$\begin{array}{c} .60\\ .59\\ 4.94\\ 3.91\\ 4.03\\ 7.03\\ 6.66\\ .23\\ .28\\ .26\\ .80\\ .81\\ .51\\ .49\\ \end{array}$	9796 9734 9709 9650 10001 9527 8928 11102 10755 10706 11920 11768 10237 10307	$13192 \\ 13444 \\ 14550 \\ 14320 \\ 14757 \\ 13918 \\ 13604 \\ 13534 \\ 13316 \\ 13341 \\ 14071 \\ 13923 \\ 13383 \\ 13293$			
		ì	А	LASKA						
2479 2483 2219 2222 2224 2227			13.89 6.74 2.55 6.60	$ \begin{array}{c c} 4.65 \\ 7.23 \\ 12.47 \\ 6.05 \\ 10.87 \\ 4.90 \end{array} $.51 .82 .44 .57 .41 .60	13640 12137 11968 13711 11338 14868	15083 15537 15017 15101 13898 15873			
Argentina, South America										
4079C 7.67 42.85 1.21 6320 13792										
Brazil, South America										
172 173		Dry Coal Dry Coal			3.02 4.53	10028 9830	14398 14241			

-

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904. (Out of print).

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905. (Out of print).

Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905. (Out of print).

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906. (Out of print).

Oircular No. 3. Fuel Tests with Illinois Coal. (Compiled from tests made by the Technologic Branch of the U. S. G. S., at the St. Louis, Mo., Fuel Testing Plant, 1904-1907, by L. P. Breckenridge and Paul Diserens. 1909.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906. (Out of print).

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906. (Out of print).

Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906. (Out of print).

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr, and Henry B. Dirks. 1906.

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906. (Out of print).

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906. (Out of print).

Bulletin No. 10. Tests of Concrete and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907. (Out of print).

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907. (Out of print).

Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1906, by Arthur N. Talbot. 1907. (Out of print).

Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907.

Bulletin No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N. Talbot. 1907. (Out of print).

Bulletin No. 15. How to Burn Illinois Coal without Smoke, by L. P. Breckenridge. 1908 Bulletin No. 16. A Study of Roof Trusses, by N. Clifford Ricker. 1908.

Bulletin No. 17. The Weathering of Coal, by S. W. Parr, N. D. Hamilton, and W. F. Wheeler. 1908. (Out of print).

Bulletin No. 18. The Strength of Chain Links, by G. A. Goodenough and L. E. Moore. 1908. Bulletin No. 19. Comparative Tests of Carbon, Metallized Carbon and Tantalum Filament Lamps, by T. H. Amrine. 1908. (Out of print).

Bulletin No. 20. Tests of Concrete and Reinforced Concrete Columns, Series of 1907, by Arthur N. Talbot. 1908. (Out of print).

Bulletin No. 21. Tests of a Liquid Air Plant, by C. S. Hudson and C. M. Garland. 1908.

Bulletin No. 22. Tests of Cast-Iron and Reinforced Concrete Culvert Pipe, by Aithur N. Talbot. 1908.

Bulletin No. 23. Voids, Settlement and Weight of Crushed Stone, by Ira O. Baker. 1908. Bulletin No. 24. The Modification of Illinois Coal by Low Temperature Distillation, by

S. W. Parr and C. K. Francis. 1908.

Bulletin No. 25. Lighting Country Homes by Private Electric Plants, by T. H. Amrine. 1908. Bulletin No. 26. High Steam-Pressures in Locomotive Service. A Review of a Report to the Carnegie Institution of Washington. By W. F. M. Goss. 1908.

Bulletin No. 27. Tests of Brick Columns and Terra Cotta Block Columns, by Arthur N. Talbot and Duff A. Abrams. 1909.

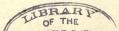
Bulletin No. 28. A Test of Three Large Reinforced Concrete Beams, by Arthur N. Talbot. 1909.

Bulletin No. 29. Tests of Reinforced Concrete Beams: Resistance to Web Stresses, by Arthur N. Talbot, 1909.

Bulletin No. 30. On the Rate of Formation of Carbon Monoxide in Gas Producers, by J. K. Clement, L. H. Adams and C. N. Haskins. 1909.

Bulletin No. 51. Fuel Tests with House-heating Boilers, by J. M. Snodgrass. 1909.

Bulletin No. 32. Occluded Gases in Coal, by S. W. Parr and Perry Barker. 1909.


Bulletin No. 33. Tests of Tungsten Lamps, by T. H. Amrine and A. Guell. 1909.

Bulletin No. 34- Tests of Two Types of Tile Roof Furnaces under a Water-tube Boiler, by J. M. Snodgrass. 1909.

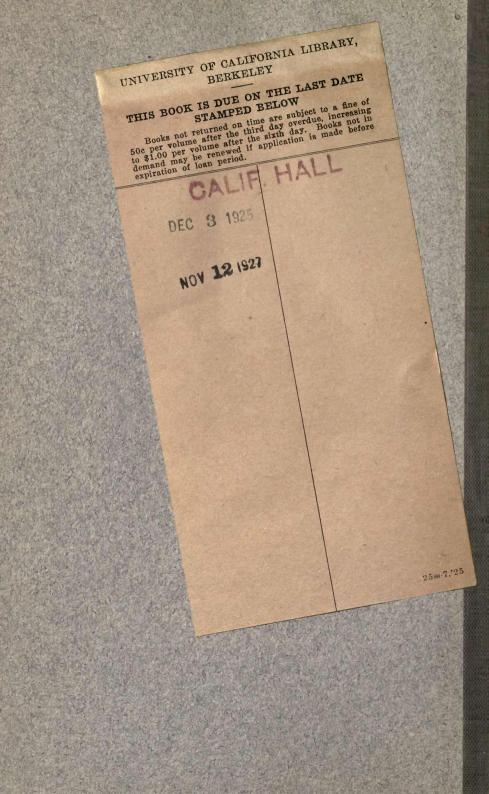
Bulletin No. 35. A Study of Base and Bearing Plates for Columns and Beams, by N. Clifford Ricker. 1909

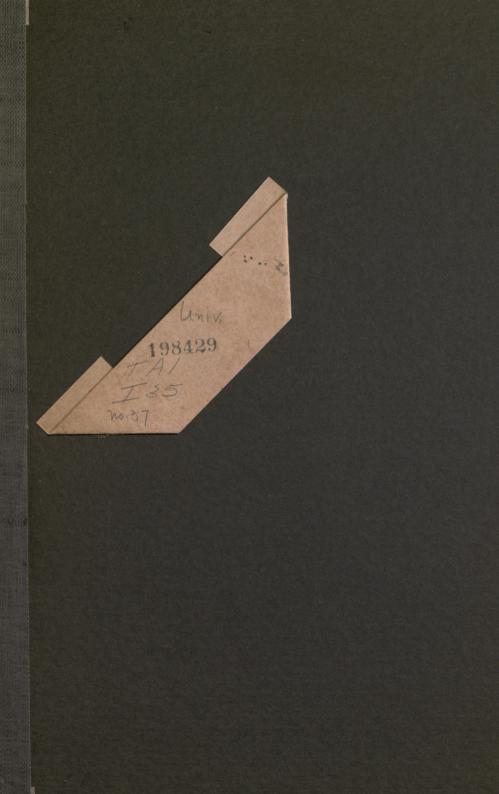
Bulletin No. 36. The Thermal Conductivity of Fire Clay at High Temperetures, by J. K. Clement and W. L. Egy. 1909.

Bulletin No. 37. Unit Coal and the Composition of Coal Ash, by S. W. Parr and W. F Wheeler, 1909.

UNIVERSITY OF ILLINOIS

THE STATE UNIVERSITY


THE UNIVERSITY INCLUDES THE


- COLLEGE OF LITERATURE AND ARTS (Ancient and Modern Languages and Literatures, Philosophical and Political Science Groups of Studies, Economics, Commerce and Industry.)
- COLLEGE OF ENGINEERING (Unexcelled library; spacious buildings; well-equipped laboratories and shops. Graduate and undergraduate courses in Architecture; Architectural Engineering; Architectural Decoration; Civil Engineering; Municipal and Sanitary Engineering; Electrical Engineering; Mechanical Engineering, Mining Engineering, Railway Engineering.
- COLLEGE OF SCIENCE (Astronomy, Botany, Chemistry, Geology, Mathematics, Physics, Physiology, Zoology).
- COLLEGE OF AGRICULTURE (Animal Husbandry, Agronomy, Dairy Husbandry, Horticulture, Veterinary Science, Household Science).
- COLLEGE OF LAW (Three years' course).
- COLLEGE OF MEDICINE (College of Physicians and Surgeons, Chicago). (Four years' course).
- COLLEGE OF DENTISTRY (Chicago). (Three years' course).
- SCHOOLS-GRADUATE SCHOOL, MUSIO (Voice, Piano, Violin), LIBRARY SCIENCE, PHARMACY (Chicago), EDU-CATION, RAILWAY ENGINEERING AND ADMINISTRA-TION.
- A Summer School with a session of nine weeks is open each summer.
- A Military Regiment is organized at the University for instruction in Military Science. Closely connected with the work of the University are students' organizations for educational and social purposes. (Glee and Mandolin Clubs; Literary, Scientific, and Technical Societies and Clubs, Young Men's and Young Women's Christian Associations).
- United States Experiment Station, State Laboratory of Natural History, Biological Experiment Station on Illinois River, State Water Survey, State Geological Survey
- Engineering Experiment Station. A department organized to investigate problems of importance to the engineering and manufacturing interests of the State.
- The Library contains 122,000 volumes and 14,000 pamphlets.
- The University offers 526 Free Scholarships.


For catalogs and information address

W. L. PILLSBURY, Registrar,

Urbana, Illinois.

